
Faster All-Pairs Optimal Electric Car Routing

Dani Dorfman∗ Haim Kaplan† Robert E. Tarjan‡ Mikkel Thorup§ Uri Zwick†

Abstract

We present a randomized Õ(n3.5)-time algorithm for computing optimal energetic paths for an
electric car between all pairs of vertices in an n-vertex directed graph with positive and negative
costs, or gains, which are defined to be the negatives of the costs. The optimal energetic paths
are finite and well-defined even if the graph contains negative-cost, or equivalently, positive-gain,
cycles. This makes the problem much more challenging than standard shortest paths problems.

More specifically, for every two vertices s and t in the graph, the algorithm computes αB(s, t),
the maximum amount of charge the car can reach t with, if it starts at s with full battery, i.e.,
with charge B, where B is the capacity of the battery. The algorithm also outputs a concise
description of the optimal energetic paths that achieve these values. In the presence of positive-
gain cycles, optimal paths are not necessarily simple. For dense graphs, our new Õ(n3.5) time
algorithm improves on a previous Õ(mn2)-time algorithm of Dorfman et al. [ESA 2023] for the
problem.

The gain of an arc is the amount of charge added to the battery of the car when traversing the arc.
The charge in the battery can never exceed the capacity B of the battery and can never be negative.
An arc of positive gain may correspond, for example, to a downhill road segment, while an arc with
a negative gain may correspond to an uphill segment. A positive-gain cycle, if one exists, can be
used in certain cases to charge the battery to its capacity. This makes the problem more interesting
and more challenging. As mentioned, optimal energetic paths are well-defined even in the presence
of positive-gain cycles. Positive-gain cycles may arise when certain road segments have magnetic
charging strips, or when the electric car has solar panels.

Combined with a result of Dorfman et al. [SOSA 2024], this also provides a randomized Õ(n3.5)-
time algorithm for computing minimum-cost paths between all pairs of vertices in an n-vertex graph
when the battery can be externally recharged, at varying costs, at intermediate vertices.

1 Introduction

Let G = (V,A, c) be a weighted directed graph, where V is the set of vertices, A ⊆ V ×V is the set of
arcs, and where c : A→ R is a real-valued cost function defined on the arcs. The cost c(uv) of an arc
uv ∈ A 1 is the amount of energy consumed when traversing the arc. Throughout most of this paper,
it is more convenient to work with a gain function g : A → R rather than a cost function. The gain
g(uv) of an arc uv ∈ A is simply g(uv) = −c(uv), i.e., the amount of energy gained by traversing the
arc. The gain g(uv) is negative if moving from u to v requires spending energy, or positive if energy
is gained by moving from u to v.

A weighted directed graph G = (V,A, g), where g : A → R is a gain function, may be viewed as
modeling a road network on which an electric car can roam. The electric car is assumed to have a

∗Max Planck Institute for Informatics, Saarbrücken , Germany. Email: dani.i.dorfman@gmail.com.
†{haimk,zwick}@tau.ac.il. Work of Uri Zwick partially supported by grant 2854/20 of the Israeli Science Founda-

tion. Work of Haim Kaplan partially supported by ISF grant 1595/19 and the Blavatnik family foundation.
‡Department of Computer Science, Princeton University. Research partially supported by a gift from Microsoft.

Email: ret@princeton.edu.
§BARC, University of Copenhagen, Denmark. Research supported by the VILLUM Foundation grant no. 16582.

Email: mikkel2thorup@gmail.com
1For brevity we denote an arc from u to v by uv, rather than (u, v).

1

ar
X

iv
:2

50
5.

00
72

8v
1

 [
cs

.D
S]

 2
7

A
pr

 2
02

5

battery of capacity B, where B > 0 is a parameter, i.e., it can store up to B units of energy. The charge,
i.e., the amount of energy in the battery, can never be negative, and can never exceed the capacity of
the battery. If the car is currently at vertex u with charge b in its battery, where 0 ≤ b ≤ B, then it
can traverse an arc uv ∈ A if and only if b+ g(uv) ≥ 0. If this condition holds, and the car traverses
the arc, then it reaches v with a charge of min{b+g(uv), B}. The car can traverse uv if b+g(uv) > B,
but the battery does not charge beyond its capacity of B. The car can traverse a path if and only if it
can sequentially traverse its arcs. Throughout most of the paper we assume that no external charging
of the battery is allowed. The battery is only charged by traversing arcs with positive gain. We may
assume that g(uv) ∈ [−B,B], for every uv ∈ A, as arcs with g(uv) < −B can never be used, and can
thus be removed, and gains g(uv) > B can be changed to g(uv) = B without changing the problem.

We consider the following two related natural questions:

1. Given two vertices s, t ∈ V , what is the maximum final charge, denoted αB(s, t), with which
the car can reach t if it starts at s with full battery, i.e., with a charge of B? If the car cannot
reach t even with an initial charge of B at s, we let αB(s, t) = −∞. More generally, we let
αb(s, t), where 0 ≤ b ≤ B, be the maximum final charge with which the car can reach t if it
starts at s with a charge of b.

2. Given two vertices s, t ∈ V , what is the minimum initial charge at s, denoted β0(s, t), that
enables the car to reach t? If the car cannot reach t even with an initial charge of B at s, we let
β0(s, t) = ∞. More generally, we let βb(s, t), where 0 ≤ b ≤ B, be the minimum initial charge
at s required for reaching t with a charge of at least b.

It is not difficult to see, as shown in Dorfman et al. [5, Corollary 5.2], that β0(s, t) = B − ⃗αB(t, s),
where ⃗αB(t, s) denotes the maximum final charge at s when starting at t with full battery in the reverse
of the graph. Thus, the problems of computing maximal final charges and minimum initial charges are
computationally equivalent. (Note, however, that due to the reverse operation used, the single-source
version of the maximum final charge problem becomes equivalent to the single-target version of the
minimum initial charge problem.) In this paper, we only work with maximal final charges.

If all arc costs are nonnegative, i.e., all gains are nonpositive, then it is easy to see that β0(s, t) = δ(s, t),
and αB(s, t) = B− δ(s, t), if δ(s, t) ≤ B, where δ(s, t) is the standard distance from s to t with respect
to the costs of the arcs. Otherwise, β0(s, t) = ∞ and αB(s, t) = −∞. When costs and gains can
be both positive and negatives, the problem becomes more complicated. If there are no positive-gain
cycles in the graph, the problem can be solved using fairly simple adaptations of standard shortest
paths algorithms. Thus, the single-source version of the maximal final charges problem can be solved
in O(mn) time using an adaptation of the classical Bellman-Ford algorithm [2, 7], and the all-pairs
version of the problem can be solved in O(mn + n2 log n) time by an adaptation of the classical
algorithm of Johnson [9]. For these results see, Artmeier, Haselmayr, Leucker and Sachenbacher [1],
Eisner, Funke and Storandt [6], Brim and Chaloupka [3], and Dorfman, Kaplan, Tarjan and Zwick [5].

The problem becomes much harder when the graph may contain positive-gain cycles. Part of the
difficulty is that optimal paths, which are still well-defined, are not necessarily simple and might have
to ‘hop’ from one positive-gain cycle to another, until gaining enough charge to head directly to the
destination. (See Lemma C.5 below.) Hélouët et al. [8] obtained a polynomial time algorithm for the
decision problem of determining whether β0(s, t) ≤ B. Dorfman et al. [5] obtained an O(mn+n2 log n)-
time algorithm for the single-source version of the problem, which of course implies an O(mn2 +
n3 log n)-time algorithm for the all-pairs version.

Our main result is a randomized Õ(n3.5)-time2 algorithm for solving the all-pairs versions of the
maximal final charge problem, and hence also the minimum initial charge problem, improving by a
Θ(
√
n) factor for sufficiently dense graphs on the O(mn2 + n3 log n) running time of the algorithm of

2The Õ(·) hides logarithmic factors.

2

Dorfman et al. [5]. To appreciate our result, we draw a parallel to standard shortest paths. On a graph
with n nodes and m edges (and a suitable potential function), the single source shortest path problem
can be solved in O(m+ n log n) time, leading to an O(mn+ n2 log n) = O(n3) all pairs algorithm for

dense graphs. A breakthrough result by Williams [11] achieved an O(n3

2c
√
logn

) time all pairs algorithm,
shaving a subpolynomial factor for dense graphs.

All the discussion so far assumed that that battery cannot be recharged at intermediate vertices. A
natural variant is obtained when we assume that the battery can be charged at some of the vertices of
the graph, with a cost per unit of charge that may vary from vertex to vertex. The goal then, is to find
minimum-cost paths within all pairs of vertices in the graph. This problem was considered by Khuller,
Malekian and Mestre [10] in the context of conventional, gas-operated, cars, i.e., when all arc costs
are positive, and by Dorfman, Kaplan, Tarjan, Thorup and Zwick [4] in the context of electric cars,
i.e., when the costs, or gains, can be both positive and negative, and where there might be positive-
gain cycles. The main result of Dorfman et al. [4] is a reduction from the all-pairs minimum-cost
paths problem to the all-pairs maximal final charges and minimum initial charges problems, and to
the standard all-pairs shortest paths problem. Combined with the results of Dorfman et al. [5], this
implies an O(mn + n2 log n)-time algorithm for the all-pairs minimum-cost paths in graphs with no
positive-gain cycles. Combined with our result, we obtain a randomized Õ(n3.5)-time algorithm for
the all-pairs minimum-cost paths in graphs that may contain positive-gain cycles.

To obtain the improved algorithm we need to introduce many new ideas. We next try to give a rough
intuitive description of some of them, ignoring some technicalities that will be dealt with later.

Optimal energetic paths can be very long. (Their length cannot be bounded as a function of n alone.
A bound must also take the arc gains and the capacity of the battery into account. For more details,
see [5].) A natural idea to reduce the length of optimal energetic paths is to introduce shortcuts, i.e.,
add new arcs that correspond to possibly long paths in the graph. In the standard shortest paths
problem, any path in the graph can be used to generate a shortcut, with the gain (or cost) of the arc
equal to the sum of the gains of the arcs on the path. This is far from being the case for energetic
paths. Consider, for example, a path xyz with g(xy) = −1 and g(yz) = 1. We cannot add a new arc
xz with g(xz) = 0 to the graph since an electric car with an empty battery would be able to traverse
the new arc xz, but not the original path xyz.

Ignoring some technicalities, we can add a shortcut corresponding to a traversable path in the graph
(a path that can be traversed if we start with full battery) if the path is ascending or descending. (See
Figure 1(a)-(b).) Given a path u0u1 . . . uk, let ai =

∑i−1
j=0 g(ujuj+1), for 0 ≤ j ≤ k, be the prefix sums

of the gains along the path. We say that a path is ascending if 0 ≤ ai ≤ ak, for every 1 ≤ i ≤ k, and
descending if ak ≤ ai ≤ 0, for every 1 ≤ i ≤ k. If u0u1 . . . uk is ascending or descending, then we are
allowed to add a shortcut u0uk with g(u0uk) = ak. For brevity, we refer to ascending or descending
paths as monotone.3

Unfortunately, most paths are not monotone. Furthermore, subpaths of monotone paths are not
necessarily monotone. There may also be very long paths that do not contain any monotone subpath.
We refer to such paths as funnels. Examples of funnels are given in Figure 1(c)-(f).

Our algorithm constructs monotone paths and funnels and combines them to obtain new monotone
paths and funnels until enough information is available to find the optimal energetic paths. The exact
details, some of which are quite delicate, appear in the rest of the paper.

Another idea used by our new algorithm is sampling. It is well known that a random set of vertices
of size (cn log n)/k is likely to hit any given path of length at least k. Taking advantage of this fact in
our context is again much more complicated.

The rest of this extended abstract consists of a technical review of our algorithm and main techniques.

3Note that this does not imply that the prefix sums a1, a2, . . . , ak form a monotone sequence.

3

𝑣1

𝑣2

𝑣3

𝑣4
𝑣6 𝑣8

𝑣5
𝑣7

𝑣8

𝑣7

𝑣6

𝑣5𝑣3𝑣1

𝑣4
𝑣2

𝑣1

𝑣8

𝑣7

𝑣6

𝑣5𝑣3

𝑣4

𝑣2

(𝑏)

(𝑐) (𝑑)

(𝑓)

𝑣1

𝑣2

𝑣3

𝑣4

𝑣6 𝑣8

𝑣5 𝑣7

(𝑒)

𝑣8

𝑣7

𝑣6

𝑣5𝑣3

𝑣1

𝑣4𝑣2

𝑣8

𝑣7

𝑣6

𝑣5
𝑣3𝑣1

𝑣4

𝑣2

(𝑎)

Figure 1: The graphs represent directed paths going from left to right. The vertical height of an arc
e in the figure is |g(e)|. The vertical height of a vertex is its gain on the path (i.e. sum of arc gains).
Figures (a) and (b) show an ascending path and a descending path, respectively. Figures (c)-(f) show
the four possible cases for funnels. Note that in Figure (c), v3 (which is the endpoint of the second
arc of the funnel) has the same gain as v1, this is valid.

The full version of the paper is given in the appendix.

2 Technical Review

A main tool in our algorithm is shortcutting. In the setting of standard shortest paths, any path
P = v1 . . . vk can be shortcutted to a single arc v1vk of gain g(P) =

∑k−1
i=1 g(vivi+1) without affecting

the lengths of the shortest paths. Unfortunately, because of the upper and lower bound constraints
on the battery, this technique breaks down when applied to energetic paths. That is, by shortcutting
arbitrary paths, we may change the optimal energetic paths. For example, assume B = 10 and let G be
a graph that is composed of two paths P1 = v1v2v3 and P2 = u1u2u3, where g(v1v2) = g(u2u3) = −5
and g(v2v3) = g(u1u2) = 5. Observe that α0(v1, v3) = −∞ and α10(u1, u3) = 5. On the other hand,
by shortcutting the paths v1v2v3 and u1u2u3 (to arcs of gain 0) we will be able to reach v3 from v1
when starting with zero charge. Moreover by using the new 0 gain arc u1u3 the maximum final charge
at u3 (when starting with 10 charge at u1) becomes 10.

The above discussion encourages us to find safe paths that can be shortcutted without affecting the
optimal energetic paths (i.e., without affecting the α values). We call these paths monotone paths,

4

see Definition B.2 and Figure 1. Monotone paths are either ascending or descending. An ascending
path P = v1 . . . vk is a traversable path that satisfies that whenever an electric car traverses P , the
car has minimum charge at v1 and maximum charge at vk. A traversable path P = v1 . . . vk is a path
that does not contain any subpath vi . . . vj of gain smaller than −B (this is equivalent to saying that
a car that starts at v1 with full charge can traverse P without the charge level going below zero).
Similarly, a descending path P = v1 . . . vk is a traversable path that satisfies that whenever an electric
car traverses P , the car has max charge at v1 and minimum charge at vk (in particular, the gain of a
descending path is at least −B). A monotone path avoids the two problems mentioned in the previous
example: The charge level of an ascending path never drops below the charge level at v1 and therefore
the path v1v2v3 from the previous example cannot be shortcutted. Moreover, since the charge level
remains below the charge level at vk, shortcutting P does not create an alternative path from v1 to
vk that improves the final charge at vk, similarly to what happened with the path u1u2u3 from the
previous example.

We prove in Theorem F.1 that in Õ(n3.5) time we can compute a 2-dimensional table M [·][·] that
dominates all simple monotone paths. That is, for every simple monotone path P = v1 . . . vk, it holds
that M [v1][vk] ≥ g(P). Moreover, the table M is sound. That is, for every u, v ∈ V , if M [u][v] ̸= −∞,
then there exists a monotone path P (not necessarily simple) from u to v such that g(P) ≥ M [u][v].
Since monotone paths are traversable, it follows that if M [u][v] ̸= −∞, then M [u][v] ≥ −B. Note that
it is possible that M [u][v] > B. Once we have computed M , solving the all pairs αB(·, ·) problem is
rather simple, we explain this derivation at the end of the technical review.

The following is a high level description of the computation of M . For simplicity, in this short review,
we only describe how to dominate ascending paths. A simple observation is that every monotone path
P contains a monotone subpath of edge-length 2 or 3. We call such a path a short monotone path.
Thus, by shortcutting such a short monotone subpath into a single arc, we get an ascending path
P ′ of smaller length than P and larger or equal gain than g(P). This observation leads to a trivial
Õ(n4) algorithm: Perform n iterations and generate a series of graphs G0 = G,G1, . . . , Gn. In the
i’th iteration we find for every u, v the largest gain short monotone path from u to v in Gi. Once we
have found all such gains, we build Gi by increasing the gains of every arc4 (u, v) in Gi−1 if there is a
corresponding short monotone path from u to v of a better gain. We can implement each iteration in
Õ(n3) time using a BST data structure. The table M stores the gains of the arcs of final graph Gn.
Given a simple ascending path P in G0, this process implicitly constructs a series of paths Pi ∈ Gi,
where Pi is obtained from Pi−1 by shortcutting as many short monotone paths as possible and Pn is
a single arc.5

An immediate question is whether Θ(n) iterations are necessary. The answer is yes. The reason for
this are double-funnels (see Figure 2(a)). A path P = v1 . . . vk is a double-funnel if P does not contain
a short monotone subpath. Double-funnels can have Θ(n) edges and an ascending monotone path
which consists mainly of a long double-funnel would require Θ(n) iterations to be shortcutted into a
single arc, see Figure 2(b).

As a consequence of the discussion above, in order to improve upon the simple algorithm, we need
to handle double-funnels and reduce the number of iterations. A simple observation is that every
ascending path can be viewed as an alternation between double-funnels (that are maximal with respect
to inclusion) and short monotone paths, see Figure 3. Indeed, by the definition of a double-funnel, if
we extend a double-funnel that is maximal with respect to inclusion by a single arc, the path ceases
to be a double-funnel and therefore contains a short monotone path.

Let P be an ascending path such that P is not shortcutted to a single arc after T =
√
n iterations

of the simple algorithm. Let P0, . . . , PT (paths in G0, . . . , GT , respectively) be the corresponding

4We assume Gi−1 is a full graph by adding arcs of gain −∞.
5Note that Pi is not uniquely defined since short monotone paths may overlap. Moreover, we might perform shortcuts

in Pi−1 because of short monotone paths that appear in Gi−1 and not in Pi−1.

5

𝑣𝑘

𝑣1

𝑣𝑘

𝑣1
(𝑎) (𝑏)

𝑣𝑖

𝑣𝑖+1

𝑣𝑘−3

𝑣𝑘−2

𝑣𝑘−1

Figure 2: On the left: a double-funnel. On the right: worst case example for the simple algorithm.
The depicted (directed) path P = v1 . . . vk is monotone. Since v1 . . . vk−1 is a double-funnel, the only
short monotone subpath of P is vk−3vk−2vk−1vk. Assume G is a path graph that contains only the
path P . After the first iteration of shortcutting short monotone paths, we are left with the path
P1 = v1 . . . vv−3vk that has a similar structure to P . Thus, ⌊k2⌋ iterations are necessary in order to
shortcut P into a single arc.

sequence of ascending paths as we defined before. For every i = 0, . . . T , denote by fi the number
of (maximal with respect to inclusion) double-funnels in Pi. By the interleaving property of double-
funnels and short monotone paths, for every i = 0, . . . , T − 1, the number of short-monotone subpaths
in Pi is at least fi and therefore |Pi+1| ≤ |Pi| − fi (where |Q| denotes the number of arcs in a path
Q). Since P = P0 is a simple path (and thus of length at most n − 1), and since we can uniquely
charge a short monotone path that we shortcut at iteration i to each funnel in Pi it follows that∑T

i=1 fi < n, so the average number of funnels per iteration (of the T iterations that we consider)

satisfies 1
T

∑T
i=1 fi = 1√

n

∑√
n

i=1 fi <
√
n. By Markov’s inequality, in at least 1

2T = 1
2

√
n iterations,

fi ≤ 2
√
n. Thus, in at least half of the T iterations, the paths Pi have O(

√
n) double-funnels. By

sampling uniformly at random Θ(log n) iterations, we are guaranteed to “hit” such an iteration w.h.p..
The final component of our algorithm is the procedure Long-Shortcuts(Gi), that, given a path Pi with
O(
√
n) double-funnels, finds long shortcuts (i.e., shortcuts that correspond to monotone paths that

could be of any length) in Pi, resulting in a path Pi+1 that is shorter than Pi by a constant factor.

Based on the above discussion, our algorithm proceeds as follows. We perform Θ̃(
√
n) iterations. In

each iteration we find all short monotone path and shortcut them (this results in a modified graph
with larger arc gains). Moreover, in each iteration, with probability Θ̃(1√

n
) we additionally call

Long-Shortcuts which finds long monotone paths in the current graph, shortcuts them, and returns a
modified graph.

We now describe the procedure Long-Shortcuts(Gi). We extensively use two path structures in
Long-Shortcuts: Arc-bounded paths and funnels, see Figure 1. A path P = v1 . . . vk is first arc-
bounded if for every i = 2 . . . , k, it holds that

∑i−1
j=1 g(vjvj+1) ≤ max{0, g(v1v2)} and

∑i−1
j=1 g(vjvj+1) ≥

min{0, g(v1v2)}. A last arc-bounded path is defined analogously. A path is arc-bounded if it is either
first or last arc-bounded. A path P is a funnel if it is both arc-bounded and a double-funnel. Observe
that any double-funnel can be decomposed to two funnels, each starts or ends at the edge of largest
gain in absolute value, see Figure 3. Given the current graph Gi, Long-Shortcuts(Gi) stores a table
D[·][·] such that for every u, v, w ∈ V , D[uv][w] stores the largest recorded gain of a first arc bounded
path in Gi that starts with the arc uv and ends at w (D[u][vw] is defined similarly for last arc-bounded
paths). Algorithm Long-Shortcuts first generates arc-bounded paths (that is, stores values in the table
D) and finally, finds long monotone paths based on those arc bounded paths. To ease the explanation,
we begin by demonstrating the latter.

6

Figure 3: A decomposition of an ascending path to double-funnels that are maximal with respect
to inclusion. Observe that “the gap” between two double-funnels contains a short-monotone path.
The double-funnels are split into two funnels. Note that the green double-funnel is not maximal with
respect to inclusion (it can be extend backwards by 2 arcs), this was done for aesthetic reasons to
show “the gap” after the purple funnel.

𝑤

𝑢

𝑣
𝑥

𝑤

𝑢

𝑣

𝑥
(𝑎) (𝑏)

Figure 4: Finding a monotone path by extending an arc-bounded path by a single arc.

2.1 Generating monotone paths from arc-bounded paths

This part is straightforward: Given a vertex u ∈ V , we consider all arc-bounded paths that start at u
and we extend each by a single arc: We scan all triplets v, w, x ∈ V , such that D[uv][w] ̸= −∞, and
“concatenate” the arc-bounded path P uv,w that corresponds to D[uv][w] with the arc wx, resulting
in a path P uv,x to x that starts with uv.6 Assume g(uv) > 0 (other cases are similar). If this
concatenated path remains arc bounded then we did not find a monotone path. Otherwise, either
D[uv][w] + g(wx) > g(uv) or D[uv][w] + g(wx) < 0. It is easy to see that in the former case, P uv,x

is ascending (see Figure 4(a)), and in the latter case the subpath from v to x is descending (see
Figure 4(b)). It is easy to see that the running time of this process is O(n3).

2.2 Finding arc-bounded paths

As already discusses, any path can be viewed as an alternation between double-funnels (which are just
two funnels that are concatenated) and short monotone paths. Thus, handling funnels has a crucial
role.

We compute arc bounded paths using two building blocks.

1. A procedure Compute-Funnels(H) to compute funnels. Given a graph H, Compute-Funnels(H)
returns a table D[·][·] that dominates every funnel (which is a simple path) in H. That is, for
every funnel P = v1 . . . vk that is first arc-bounded, it holds that D[v1v2][vk] ≥ g(P). Similarly,

6We do not actually store paths. Instead we examine the quantity D[uv][w] + g(wx).

7

for every funnel P = v1 . . . vk that is last arc-bounded, it holds that D[v1][vk−1vk] ≥ g(P).
Moreover, the table D is sound. That is, for every u, v, w ∈ V , if D[uv][w] ̸= −∞, then there
exists a first arc-bounded pathQ = v1 . . . vk (not necessarily a funnel) such that g(Q) ≥ D[uv][w].
For the full details, see Appendix E.3.3

2. A concatenation procedure Concatenate(H,D, v). Given a graph H, a table D[·][·] and a vertex
v ∈ V . The procedure, in a brute force manner, scans all 4-tuples (w, x, y, z) of vertices and
then tries to concatenate a first arc-bounded path in D that start with the arc vw and end at x
with first arc-bounded path that start with the arc xy and end at z.7 Note that this procedure
only generates arc-bounded paths that start at v. For the full details, see Appendices E.3.2
and E.3.4. A naive implementation of this procedure takes O(n4) time. Using a balanced binary
search tree, we get a running time of Õ(n3). Since our claimed running time for the entire
algorithm is Õ(n3.5), we can use the Concatenate procedure only Õ(n0.5) times.

We now describe Long-Shortcuts(H) and the intuition about it. The algorithm starts by calling

to Compute-Funnels(H), which in Õ(n3 1
3) time computes a table D[·][·] that dominates all simple

funnels in H. The algorithm then samples uniformly at random sets Si ⊆ V of size Õ
(√

n
2i

)
, for

i = 1, . . . , log(
√
n). Then, for every i = 1, . . . , log(

√
n) and u ∈ Si we perform 2i times the pro-

cedure Concatenate(H,D, u). Finally, we extract monotone paths by applying the procedure from
Appendix 2.1 on every vertex in S = ∪iSi.

We now give the intuition behind the algorithm. Recall the discussion about “hitting” an iteration
in which Pi = v1 . . . vk (an ascending path in Gi, for some 0 ≤ i ≤ T =

√
n, that represents the

evolution of P = P0 over the iterations of shortcutting) has at most 2
√
n double-funnels. Assume we

run Long-Shortcuts(Gi). Every vertex vj ∈ Pi defines a first arc-bounded path P ′ = vj . . . vt, where
j ≤ t ≤ k is maximal such that vj . . . vt is first arc-bounded, see Figure 5. Note that P ′ may contain
several double-funnels, say f . Thus, if we apply Concatenate(G,D, vj), Θ(f) times, the table D will
“find” P ′ (that is we will have D[vjvj+1][vt] ≥ g(P ′)). By the discussion in Appendix 2.1, if we extend
vj . . . vt by the arc vtvt+1 we will find a monotone path of length t − j + O(1). For this process to
be efficient, we have to balance the work we do (which is proportional to the number of funnels in
P ′ which is the number of calls to concatenate that we need to do to find P ′) to compute P ′ with
the reward we achieve (which is proportional to the length of P ′) by shortcutting the monotone path
corresponding to P ′.

We are shooting for a running time of O(n3.5), therefore as we already said we can call concatenate at
most O(

√
n) times (recall that it works for a single particular vertex at each call). In particular, for

every i = 1, . . . , log(
√
n), the product of |Si| and the number of calls of concatenate from each vertex

of Si should be O(
√
n). To explain why we need the O(log(n)) levels of sampling, we consider the

two extreme cases which our sampling interpolates between. That is, the case of i = log(
√
n) where

Si = O(1) and the case of i = 1 where |Si| = O(
√
n).

These two cases are demonstrated in Figure 5 for a path Pi of length Θ(n) and Θ(
√
n) funnels. The

first example (i = log(
√
n)), depicted in Figure 5(a), considers the case in which all funnels, except

for the first one, are of constant length and the rest is filled with the first funnel which is of linear size.
Moreover, the arc-bounded paths that correspond (in the manner explained in the previous paragraph)
to every vertex in a short funnel are of constant length and the arc-bounded paths that correspond to
vertices in the long funnel are all reaching the last arc of the path. Thus, in order to achieve sufficient
reward (i.e., find long enough monotone paths), we have to sample a vertex u in the long funnel and
then perform Θ(

√
n) times Concatenate(Gi, D, u). Thus, the example shows that there are cases in

which we have to perform Θ(
√
n) concatenations at a single vertex.

7Formally, we look on the quantity D[vw][x]+D[xy][z] and verify some inequalities to make sure that the concatenated
path is indeed first arc-bounded.

8

The second extreme case, depicted in Figure 5(b), is the case in which all funnels are of length Θ(
√
n)

and for every v ∈ Pi, the arc-bounded path that corresponds to v contains a single funnel. Thus, for
every v ∈ Pi we can apply a single concatenation and find the arc-bounded path that corresponds to
v and later extend it to a monotone path of length O(

√
n). In this case to reduce the length of Pi by

a constant factor, we have to sample Θ(
√
n) vertices (that will hit a constant fraction of the funnels)

and perform a constant number of concatenation on each one of them.

(a) …

(b)

…

Figure 5: Two extreme cases for algorithm Long-Shortcuts. Black lines represent single arcs. Figure
(a) shows why we need to sample O(1) vertices but perform Θ(

√
n) concatenations per vertex. Figure

(b) shows why we need to sample Θ(
√
n) vertices but perform O(1) concatenations per vertex.

2.3 Solving the all-pairs problem

Finally, we briefly describe the key observations that relate monotone paths to the computation of
αB(·, ·). We begin by assuming that the optimal energetic paths are simple and later show how to
solve the general case in which the optimal paths use positive cycles.

2.4 Simple energetic paths

Assume we have computed the table M [·][·] that dominates every simple monotone path in G. Let
s, t ∈ V and let P = v1 . . . vk be an optimal energetic path from v1 = s to vk = t (that is, αB(s, t) =
αB(P)). We consider the special case in which P is simple and for every 1 < i ≤ k it holds that
αB(v1 . . . vi) < B. That is, the car starts with full charge at s and its charge level remains below B.
We decompose P as follows. Let vi1 = s and let vi2 be the vertex of lowest gain in P . We define vi3
to be the vertex of highest gain in the suffix vi2 . . . vk and so on, see Figure 6(a). This results in a
series of vertices s = vi1 , vi2 , . . . , vir = t. Clearly, this partitioning divides P into monotone segments
that alternate between ascending and descending paths. A key observation is that these monotone
paths are optimal in terms of gain. That is, for every 1 ≤ j < r, there is no monotone path Q from
vij to vij+1 with larger gain than the subpath vij . . . vij+1 . Otherwise, we can replace the subpath

9

vij . . . vij+1 by Q and increase the final charge at t,8 a contradiction to the optimality of P . Thus, for
every 1 ≤ j ≤ r, it holds that M [vij][vij+1] = g(vij . . . vij+1). Let G′ be a directed clique whose gains
are defined by M [·][·]. The final observation is that vi1vi2 . . . vir is a funnel in G′. Thus, by calling
Compute-Funnels(G′) we can find this funnel.

2.5 Handling positive cycles

A simple observation is that every positive gain cycle C contains a pair of points x, y ∈ C such that
the car can start at x with zero charge, and traverse the cycle until it reaches y with a fully charged
battery (i.e., B charge).9 We say that (x, y) is an entry-exit pair of C, where x is the entry and y is
the exit.

We prove in Lemma H.6, that every positive cycle C contains an entry-exit pair (x, y) such that
Cxy, the path from x to y through C, is ascending and Cyx, the path from y to x through C, is
descending.10 This lemma, leads to a simple algorithm for identifying entry-exit pairs: For every
x, y ∈ V , if M [x][y] > 0 and M [x][y] +M [y][x] > 0, then set α0(x, y) = B (i.e., (x, y) is an entry-exit
pair). The positive shortcut M [x][y] indicates that there is an ascending path P xy from x to y. If
M [x][y] ≥ B then clearly we can start at x with zero charge and get to y with full charge (by using
the shortcut11 xy of gain M [x][y]). Otherwise, the second inequality M [x][y]+M [y][x] > 0 guarantees
that we can start at x with zero charge and get back to x with positive charge (by using the shortcuts
xy and yx). Therefore, by extending the path to y, we generate an ascending path with larger gain
M [x][y] +M [y][x] +M [x][y] > M [x][y], see Figure 6(b). By repeating this multiple times, we get an
ascending path from x to y with gain larger than B justifying setting α0(x, y) = B.

We perform 3 additional simple inferences: For every x, y, z ∈ V

• If M [x][y] + M [y][z] ≥ 0 and M [x][y] ≥ 0, we deduce that the path that consists of the two
shortcuts M [x][y],M [y][z] is a witness that α0(x, z) ≥ 0. That is, it is possible to start at x with
zero charge and reach z: Either M [x][y] ≥ B and then the claim follows by the traversability of
monotone paths (M [y][z] ≥ −B) or M [x][y] < B and therefore either M [y][z] ≥ 0 or −M [x][y] ≤
M [y][z] < 0. The former case is trivial. In the latter case, we can start with zero charge at x
and reach y with M [x][y] charge and then continue to z and reach it with M [x][y] +M [y][z] ≥ 0
charge.

• If M [x][y] +M [y][z] ≥ 0 and M [y][z] ≥ 0, we deduce that αB(x, z) = B.

• If M [x][y] ̸= −∞ (so M [x][y] ≥ −B), we infer that αB(x, y) ≥ 0. That is, it is possible to reach
y if we start at x with full charge.

Finally, we combine these relations into a graph H and compute its transitive closure H⋆. The graph
H is defined as follows. H = (V 0 ∪ V B, E(H)), where V 0 = {v0 | v ∈ V } and V B = {vB | v ∈ V } are
two copies of V . Each vertex v0 ∈ V 0 represents being at v with 0 charge and each vertex vB ∈ V B

represents being at v with full charge. An arc ub1vb2 ∈ E(H) represents that αb1(u, v) ≥ b2.
12 We

create the arcs E(H) ⊆ {ub1vb2 | αb1(u, v) ≥ b2} according to the 4 relations shown above (for example,
if M [x][y] ̸= −∞, we add the arc xBy0 to H). We claim in Theorem H.12 that, for every s, t ∈ V ,
αB(s, t) = B if and only if sBtB ∈ E(H⋆).

8We use here the fact that the battery is not full.
9It is possible that the car took the direct path in C from x to y, or it cycled through C several times.

10It is possible that x = y. For example in a cycle in which all arc gains are positive.
11Recall that using shortcuts does not change the α values since each shortcut corresponds to a monotone path in G

of the same gain.
12Note that the other direction does not necessarily hold: It is possible that αb1(u, v) ≥ b2 but ub1vb2 /∈ E(H).

10

𝑣𝑖2

𝑣𝑖1

𝑣4

𝑣𝑖3

𝑣𝑖6

𝑣𝑖5

𝑣𝑖7=

𝑠

𝑡

=

𝑦

𝑥𝑥

𝑦

(𝑎) (𝑏)

Figure 6: (a) A decomposition of an optimal path from s to t into a sequence of simple monotone paths.
After shortcutting these paths, we are left with a funnel. (b) Illustration of why M [x][y] +M [y][x] >
0 & M [x][y] > 0 leads to α0(x, y) = B. Each blue arc represents a shortcut in M . Each such shortcut
can be unwrapped into a path in G

Using the graph H⋆, our algorithm reduces the all pairs αB(·, ·) problem to the case in which the
energetic paths are simple: For every s, t ∈ V , using H⋆, we find all vertices x ∈ V such that
αB(s, x) = B and then, as in Appendix 2.4, we find the best energetic simple path from any such x
to t.

The following is a brief review of the correctness of the algorithm. Let s, t ∈ V and let P = v1 . . . vk
be an optimal energetic path from s to t (i.e., αB(s, t) = αB(P)). We argue that there is a vertex x
on P such that αB(s, x) = B and αB(x, t) = αB(s, t). If αB(s, t) = B, then we are done since this
relation is already recorded in H⋆ and we can set x = t. Otherwise, let 1 ≤ i ≤ k be maximal such that
αB(v1 . . . vi) = B. It follows that αB(s, vi) = B and for every i < j ≤ k it holds that αB(v1 . . . vi) < B.
This implies that vi . . . vk must be a simple path.13 So we conclude that the algorithm finds the optimal
energetic path when inspecting x = vi.

2.6 A technicality - charge drop schedules

In this section we describe Charge drop schedules and the technical challenge that it addresses. Before
we delve into the definition, we motivate it by pinpointing several problems with our arguments.

1. Throughout this section we explained how to shortcut an ascending path to single arc via a
sequence of short/long shortcut updates. A key invariant that is required for this argument to
hold is the fact that given an ascending path P = v1 . . . vk, if we replace a monotone subpath
vi . . . vj of P by a monotone path Q of larger gain, then the resulting path P ′ = v1 . . . vi | Q |
vj . . . vk (The | stands for concatenation) is ascending and g(P ′) > g(P). Unfortunately, this
argument does not hold if P is descending. For example, consider the graph G in Figure 7(a)
and the descending path P = v1v2v3v4v5. After performing one iteration of the simple algorithm
(computing all short monotone paths and updating the gains of the graph), we are left with
a graph G′ with gain function g′ (see Figure 7(b)) that does not contain any monotone path
from v1 to v5. This is of course unsettling, as finding the best short shortcuts should be a good
property of the algorithm and yet it destroyed some other descending paths

2. Recall the procedure Concatenate(G,D, v) that scans all 4-tuples (w, x, y, z) of vertices and
then tries to concatenate a first arc-bounded path (stored in D) that starts with the arc vw
and ends at x with first arc-bounded path that starts with the arc xy and ends at z (which
is done by calculating D[vw][x] + D[xy][z] and verifying some inequalities). Consider the fol-
lowing example: Assume g(vw) = 5, g(xy) = 3 and D[vw][x] = 2, D[xy][z] = 3. Therefore,

13Otherwise, vi . . . vk contains a positive cycle, so by repeating the cycle (and using the fact that no vertex on cycle,
and the rest of the path, has already reached full charge) we can increase the final charge at vk = t, a contradiction.

11

−1 −1 −1 −1 4 −1 −1 −1

4

−2−2

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5

𝑥

−1

−1

−1

−1

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

4
−2

𝑣1

𝑣4

𝑣5

4
−1

𝑣1

𝑣4

𝑣5

(𝑎) (𝑏) (𝑐)

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5

𝑥

2 2 2 2
2

2

4

−1
𝑣5

Figure 7: (a) The graph G and the descending path P = v1v2v3v4v5. (b) The graph G′ that we get
after shortcutting all short monotone paths. Blue arcs correspond to either new arcs or arcs with
increased gain. Note that there is no monotone path from v1 to v5 in G′. (c) By using charge drop
schedule, we can transform the path v1v3v5 into a short descending path of gain −2.

𝑣

𝑤
𝑦

𝑥

𝑧

𝑣

𝑤
𝑦

𝑥

𝑧

(𝑎) (𝑏)

Figure 8: A use case of charge drops. (a) Two arc-bounded paths whose concatenation is not arc-
bounded. (b) By applying a simple charge-drop schedule we make the concatenated path arc-bounded.

by running Concatenate(G,D, v), we will concatenate the arc-bounded paths corresponding to
D[vw][x] and D[xy][z] and get an arc bounded path that starts at vw and ends at z with gain
D[vw][z] = D[vw][x] + D[xy][z] = 5. Unfortunately, this concatenation is not guaranteed to
happen. It is possible that earlier in the run of Concatenate(G,D, v), the algorithm managed
to improve D[vw][x] to D[vw][x] = 3 and therefore concatenating D[vw][x] to the arc-bounded
path corresponding to D[xy][z] does not result anymore in an arc-bounded path, see Figure 8(a).
Again, by performing an update that should be good for us (increasing D[vw][x] from 2 to 3),
we hurt ourself somewhere else (we did not make the update D[vw][z] = 5).

In both examples, we suffered from having computed values that are “too good”. The simple concept
that solves this problem is charge drop. Charge drops allow us, at any vertex along the path, to get
rid of some charge, see Figure 9. Formally, let P = v1 . . . vk be a path in G. A charge drop schedule
is a vector C = (d1, d2, . . . , dk) ∈ Rk

≥0, where d1 = 0. The gain at vi with respect to P and C,

denoted as gP,Cvi is defined as gP,Cvi =
∑i−1

t=1 g(vtvt+1) −
∑i

t=2 dt, for 2 ≤ i ≤ k and gv1 = 0 otherwise.
Monotone paths and arc bounded paths can be defined similarly to before by replacing the gain of an
arc g(vivi+1) by g(vivi+1)− di+1. When P is clear from contexts, we abbreviate gP,0vi and write gvi .

We now show how to fix the two examples using charge drop schedules.

1. In the first example (see Figure 7) P = v1v2v3v4v5 is a descending path in G, but there is no
descending (or ascending) path from v1 to v5 in G′. Instead, G′ contains the path v1v4v5 that
has positive gain. By using a simple charge drop schedule that drops 4 units of charge at v4, we
view v1v4v5 as a short descending path of gain −2, see Figure 7(c).

12

2. In the second example we faced a problem when trying to concatenate an arc-bounded path
corresponding to g(vw) = 5, D[vw][x] = 3 and an arc bounded path corresponding to g(xy) =
3, D[xy][z] = 3. By simply dropping a single unit of charge at x (the concatenation point), we are
now able to concatenate the two paths and therefore assignD[vw][z] = (D[vw][x]−1)+D[xy][z] =
5, see Figure 8.

We incorporate charge drops in our algorithm in the following places.

1. When computing all short monotone paths, if a path P (of length 2 or 3) starts by a negative
gain arc, we will always apply charge drop schedule and create a descending path out of P .
For example, if P = v1v2v3v4 and g(v1v2) = −5, g(v2v3) = 2, g(v3v4) = −1, then we record a
descending path from v1 to v4 of gain −5 (this corresponds to dropping one unit of charge at
v4).

2. In the computation of long monotone paths. Recall that we consider tuples u, v, w, x ∈ V and
we extend the arc-bounded path that corresponds to D[uv][w] by the arc wx. We incorporate
charge drops in the following case: If g(uv) < 0 and D[uv][w] + g(wx) ∈ [g(uv), 0] (that is the
concatenated path remains arc-bounded), we record a descending path from u to x of gain g(uv).
This corresponds to performing a charge drop at x that drops D[uv][w] + g(wx)− g(uv) charge.

3. In the concatenation procedure, whenever the concatenation of the two arc bounded paths does
not yield an arc-bounded path, we perform a charge drop to force the result to be arc-bounded.
That is, for every v, w, x, y, z ∈ V , if g(vw) > g(xy) > 0 and D[vw][x] +D[xy][z] > g(vw), we
set D[vw][z] = g(vw). This corresponds to performing the smallest possible charge drop at x
such that the concatenated path is arc-bounded, see Figure 8(b).

2.7 Main technical lemma

In this section, we prove a simplified version14 of our main lemma (Lemma F.2). Recall our algorithm:
We perform Θ̃(

√
n) iterations. In each iteration we find all short monotone path and shortcut them

(this results in a modified graph with larger arc gains). Moreover, in each iteration, with probability
Θ̃(1√

n
) we additionally call Long-Shortcuts which finds long monotone paths in the current graph,

shortcuts them, and returns a modified graph.

Lemma 2.1. Let P = v1 . . . vk be a simple ascending path in G. Let G′ be the modified graph after
√
n

iterations of the modified algorithm and let g′ be its gain function. If |P | ≤
√
n, then g′(v1vk) ≥ g(P).

If |P | >
√
n, then w.h.p. there is an ascending path P ′ in G′ from v1 to vk in that satisfies g′(P ′) ≥ g(P)

and |P ′| ≤ (1− 1/Ω(log n)) · |P |.

Lemma 2.1 is derived from Lemma 2.2, which is our main technical lemma. It provides guarantees
about Long-Shortcuts, when run on a graph with an ascending path that contains few double-funnels.

Lemma 2.2. Let P = e1 . . . ek be a simple ascending path in G from x to y. Let t(≥ 1) be the number
of double-funnels in P that are maximal with respect to inclusion. Let G′ be the updated graph resulted
from Long-Shortcuts(G).15 If t ≤ k/

√
n, then w.h.p. there is an ascending path P ′ in G′ from x to y

that satisfies gG
′
(P ′) ≥ gG(P) and |P ′| ≤ (1− 1/Ω(log n)) · |P |.

We prove Lemma 2.2 at the end of this section. The derivation of Lemma 2.1 is now straightforward.

14We address only ascending paths.
15Note that every non empty path contains at least one double-funnel.

13

Proof of Lemma 2.1. Let r =
√
n and let G0(= G), G1, . . . , Gr be the graphs throughout the r itera-

tions of the algorithm. Let P0 = P, P1, . . . , Pr be a series of monotone paths, where Pi is the shortest
path in Gi from v1 to vk that has no smaller gain (with respect to Gi) than Pi−1 (with respect to
Gi−1). We split the proof into cases.

Case |P | ≤ r: Since in each of the r rounds we compute all the short monotone paths, and since
every monotone path contains a short monotone path, we get that for every 1 ≤ i < r, if |Pi| > 1 then
|Pi+1| < |Pi|. Thus, |Pr| = 1 and the lemma follows.

Case |P | > r: If Pr ≤ |P |/2, then we are done. Otherwise Pr > |P |/2 and therefore for at
least r/2 indices 0 ≤ i < r, it holds that |Pi| − |Pi+1| ≤ |P |/r. This mean that, for each such
index i, Pi has at most |P |/r disjoint short shortcuts as subpaths. Thus, by our arguments in the
previous sections (see Figure 3), Pi contains O(|P |/r) = O(|Pi|/r) double-funnels that are maximal
with respect to inclusion. Therefore, w.h.p. we run Long-Shortcuts(Gi) at an iteration i such that Pi

contains O(|Pi|/r) = O(|Pi|/
√
n) double-funnels. Hence, the conditions of Lemma 2.2 are satisfied

and we are done.

Before proving Lemma 2.2, we need to introduce the following structural definitions. These definitions
allow us to measure how many applications of Concatenate are needed in order to dominate an arc
bounded path.

Definition 2.3. Let P = e1 . . . ek be a path in G. For every 1 ≤ i ≤ k we define sP (i) ≥ i to be
the maximal index such that ei . . . esP (i) is first arc-bounded. When P is clear from the context, we
abbreviate and write s(i).

Definition 2.4. Let P = e1 . . . ek be a path in G. For every i, we define fP (i) as the number of first
arc-bounded funnels in ei . . . es(i) that are maximal with respect to inclusion. When P is clear from
context, we abbreviate and write f(i).

The following lemma proves that for every path P = e1 . . . ek, the set of paths {ei . . . es(i) | 1 ≤ i ≤ k}
is laminar. We defer the proof of this lemma to the appendix (see Lemma F.10).

Lemma 2.5. Let P = e1 . . . ek be a path in G, then the set of intervals {(i, s(i)) | 1 ≤ i ≤ k} is
laminar.

We are now ready to prove Lemma 2.2.

Proof of Lemma 2.2. Let F1, . . . Ft be the disjoint double-funnels in P . By the discussion in Section 2,
there are O(t) = o(k) arcs in P that are not contained in the double-funnels (see Figure 3). Every
double-funnel can be decomposed into at most 2 funnels (last arc-bounded followed by first arc-
bounded). Let F ′

1, . . . , F
′
t′ , where t ≤ t′ ≤ 2t, be the corresponding funnels. We distinguish between

funnels that are first-arc bounded to those which are last-arc bounded. Assume that the majority
of the arcs of P belong to first-arc bounded funnels. The analysis for the other case is symmetric.
Therefore, these funnels (first-arc bounded) contain at least k/3 arcs.16 Among these funnels, we
consider only funnels of length at least

√
n/6. Note that at least k/6 arcs belong to such funnels (if

more than k/6 arcs belong to funnels of length at most
√
n/6 then we need at least t > k/

√
n funnels

to accommodate them, a contradiction). Denote these arcs by ei1 , . . . eir (r ≥ k/6).

By Lemma 2.5, the set A = {(ij , s(ij)) | 1 ≤ j ≤ r} is laminar. We refer to each item in A as an
interval. Recall that each interval (ij , s(ij)) corresponds to a monotone path of the same length (A
maximal arc bounded path extended by a single arc is monotone), see Section 2.1. Moreover, in order
for Long-Shortcuts to shortcut the monotone path corresponding to (ij , s(ij)), Long-Shortcuts has to
sample v ∈ eij = (v, w) and then perform f(ij) concatenations from v.

16The choice of 3 and not 2 is due to the subtlety that the disjoint double-funnels do not necessarily cover all of P .

14

In the rest of the proof, we prove that Long-Shortcuts finds enough disjoint monotone paths of to-
tal length Ω(k/ log k). To this end, we partition A into disjoint sets A1, . . . , Alog

√
n, where Ai =

{(ij , s(ij)) | f(ij) ∈ [2i, 2i+1)} ⊆ A correspond to all intervals/monotone paths that require c ∈
[2i, 2i+1) concatenations in order to be realized. We then prove that Ai⋆ , the largest of these sets
(hence of size Ω(k/ log n)), contains a collection of disjoint chains (a chain is a set of nested intervals)
B′

1, . . . , B
′
q′ ⊆ Ai⋆ such that:

1. The chains are pairwise internally disjoint. That is, for every 1 ≤ j1 < j2 ≤ q′ and (ℓ1, r1) ∈ B′
j1
,

(ℓ2, r2) ∈ B′
j2

it holds that (ℓ1, r1) ∩ (ℓ2, r2) = ∅.

2. |B′
j | = Ω

(√
n2i

⋆

logn

)
, for j = 1, . . . , q′. This property is crucial for the sampling to “hit” B′

j .

3. |
⋃q′

i=1B
′
i| = Ω(|Ai⋆ |) = Ω(k/ log n).

Finally, by Property (2), we show that w.h.p., for every j = 1, . . . , q′, Long-Shortcuts realizes an
interval from B′

j whose length is at least |B′
j |/2. By combining these disjoint (Property (1)) shortcuts,

we reduce the size of P by
∑q′

i=1 |B′
i|/2 = Ω(k/ log n).

We now show the lower bound on the size of Ai∗ and prove that it contains a collection of chains
B′

1, . . . , B
′
q′ that satisfy the above poperies. Since i⋆ is such that |Ai⋆ | ≥ |Ai| for every 1 ≤ i ≤ log

√
n

and |A| ≥ k/6 (by the laminarity of A each interval contains an edge which is not in any other
interval) it follows that |Ai⋆ | ≥ k

6 log
√
n
. Observe that for every 1 ≤ i ≤ log

√
n, Ai is laminar as a

subset of A. Moreover, each interval in Ai cannot contain two disjoint intervals in Ai. Indeed, assume
(ij1 , s(ij1)), (ij2 , s(ij2)) ⊆ (ij3 , s(ij3)) and (ij1 , s(ij1)) ∩ (ij2 , s(ij2)) = ∅, where all intervals belong to
Ai. Therefore f(ij3) ≥ f(ij1) + f(ij2) ≥ 2i + 2i = 2i+1, so (ij3 , s(ij3)) /∈ Ai, a contradiction. It follows
that we can decompose Ai (and in particular Ai∗) into a collection of internally disjoint chains.

Let B1, . . . , Bq be the decomposition of Ai⋆ into internally disjoint chains (Ai⋆ = ∪qi=1Bi). Since the
Bi’s are internally disjoint (and so are the funnels in them), q ·2i⋆ ≤ t. Let A′

i⋆ be the union of the Bi’s
that satisfy |Bi| ≥ k

12q log
√
n
. It follows that

|A′
i⋆ | ≥ |Ai⋆ | − q · k

12q log
√
n
≥ k

12 log
√
n
. (1)

Let B′
1, . . . , B

′
q′ be the chains of A′

i⋆ . Let B
′
j ⊆ A′

i⋆ , it holds that

|B′
j | ≥

k

12q log
√
n

(1)

≥ k · 2i⋆

12t log
√
n

(2)

≥
√
n2i

⋆

12 log
√
n
= Ω

(√
n2i

⋆

log n

)
,

where Inequality (1) follows since q · 2i⋆ ≤ t and Inequality (2) follows since t ≤ k/
√
n.

Recall that Long-Shortcuts(M) samples vertices to Si⋆ i.i.d. with probability pi⋆ = Θ(log2 n
2i⋆

√
n
). Since

Long-Shortcuts performs 2i
⋆
concatenations from every vertex in Si⋆ , every interval in Ai⋆ has a

probability of pi⋆ to be realized. Let B′
j ⊆ A′

i⋆ . Since |B′
j | = Ω

(√
n2i

⋆

logn

)
, it follows by the Chernoff

bound that w.h.p. we realize an interval from B′
j of length at least 0.5|B′

j |.
Since B′

1, . . . , B
′
q′ are internally disjoint, then the above realized shortcuts (one from every B′

j) are also
disjoint. Hence, by shortcutting the realized intervals we get an ascending path P ′ in G′ of length:

15

|P ′| ≤ k −
q′∑
j=1

0.5|B′
j | = k − 0.5|A′

i⋆ |
(1)

≤ k − 0.5
k

12 log
√
n

=

(
1− Ω

(
1

log n

))
· k =

(
1− Ω

(
1

log k

))
· |P |,

where Inequality (1) follows from Equation (1) and the last equality holds because, according to the
statement of the lemma,

√
n ≤ t

√
n ≤ k < n.

3 Concluding remarks

We presented a randomized Õ(n3.5)-time algorithm for the finding optimal energetic paths between
all-pairs of vertices in a weighted directed n-vertex graph with positive and negative gains that may
contain positive-gain cycles. This improves upon a previous Õ(mn2)-time algorithm by Dorfman et
al. [5]. The new algorithm is quite involved and requires the introduction of many new ideas. Improving
the running time of the algorithm is a natural open problem.

References

[1] Andreas Artmeier, Julian Haselmayr, Martin Leucker, and Martin Sachenbacher. The shortest
path problem revisited: Optimal routing for electric vehicles. KI, 6359:309–316, 2010.

[2] Richard Bellman. On a routing problem. Quarterly of Applied Mathematics, 16:87–90, 1958.

[3] Lubos Brim and Jakub Chaloupka. Using strategy improvement to stay alive. Int. J. Found.
Comput. Sci., 23(3):585–608, 2012.

[4] Dani Dorfman, Haim Kaplan, Robert E. Tarjan, Mikkel Thorup, and Uri Zwick. Minimum-cost
paths for electric cars. In 2024 Symposium on Simplicity in Algorithms, SOSA 2024, Alexandria,
VA, USA, January 8-10, 2024, pages 374–382. SIAM, 2024.

[5] Dani Dorfman, Haim Kaplan, Robert Endre Tarjan, and Uri Zwick. Optimal energetic paths
for electric cars. In 31st Annual European Symposium on Algorithms, ESA 2023, September 4-6,
2023, Amsterdam, The Netherlands, pages 42:1–42:17, 2023.

[6] Jochen Eisner, Stefan Funke, and Sabine Storandt. Optimal route planning for electric vehicles
in large networks. In Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence,
AAAI 2011, San Francisco, California, USA, August 7-11, 2011. AAAI Press, 2011.

[7] Lester R. Ford. Network flow theory. Technical Report Paper P-923, RAND Corporation, Santa
Monica, California, 1956.

[8] Löıc Hélouët, Nicolas Markey, and Ritam Raha. Reachability games with relaxed energy con-
straints. arXiv preprint arXiv:1909.07653, 2019.

[9] Donald B. Johnson. Efficient algorithms for shortest paths in sparse networks. Journal of the
ACM, 24(1):1–13, 1977.

[10] Samir Khuller, Azarakhsh Malekian, and Julián Mestre. To fill or not to fill: The gas station
problem. ACM Transactions on Algorithms (TALG), 7(3):1–16, 2011.

[11] Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In Proceedings of the
forty-sixth annual ACM symposium on Theory of computing, pages 664–673, 2014.

16

A Full Version

This appendix contains the full technical details of the paper and is organized as follows. In Appendix B
we begin with some preliminary material. Appendix D then gives an overview of the algorithm. The
new algorithm is composed of two stages. In Stage I, described in Appendix E, sufficiently many
shortcuts are found. The correctness of Stage I is proved in Appendix F. Stage II, described in
Appendices G and H, uses the shortcuts found in stage I to find the αB(s, t) values, and an implicit
representation of the optimal energetic paths.

B Preliminaries

Let G = (V,A, g), where g : A → R is a gain function. Fix the battery capacity B > 0. Suppose
we traverse a path P = v1u2 . . . vk starting with a charge of b at v1. We define αb(P) ≤ B to be the
amount of charge with which we reach vk. If P cannot be traversed with this initial charge, we let
αb(P) = −∞. For s, t ∈ V and b ∈ [0, B], define αb(s, t) = max{αb(P) | P is a path from s to t}, i.e.,
the maximal final charge possible at t when starting at s with b charge. It is proved in [5] that the max
in this definition is well-defined. (Note that the maximum is over a possibly infinite collections of paths,
since the paths are not necessarily simple.) A path P = v1 . . . vk is optimal if αB(v1, vk) = αB(P).
The all-pairs maximum final charge problem is to compute αB(s, t) for every pair s, t ∈ V . We say
that a path P is traversable if αB(P) ≥ 0, that is there is some energy level that we can start with
and traverse P . We say that a path P is strongly traversable if α0(P) ≥ 0. We let |P | be the length
of P , i.e., the number of arcs in P .

The gain of an arc uv ∈ A is g(uv). The gain of a vertex v in a path P is the sum of gains of the arcs
that lead to v in P . During our analysis we allow ourselves to dispose of some charge while traversing
a path. This leads to the following definition of gains on paths that takes into account charge drops,
see Figure 9.

Definition B.1 (Gain). Let G = (V,A, c). Let P = v1 . . . vk be a path in G and let C = (0, d2, . . . , dk) ∈
Rk
≥0 be a charge drop schedule.17 The gain at vi with respect to P and C, denoted as gP,Cvi is defined

as gP,Cvi =
∑i−1

t=1 g(vtvt+1) −
∑i

t=2 dt, for 2 ≤ i ≤ k and gv1 = 0 otherwise. That is, dt is the charge
drop performed at vt for 2 ≤ t ≤ k. We omit P and C and write gvi when P,C are clear from the

context. The gain of P with respect to C, denoted gC(P), is defined to be gP,Cvk . When no charge drop
schedule is introduced, then we assume that the schedule is zero: C = (0, . . . , 0) ∈ Rk

≥0.

Note that unlike the definition of the charge level of the electric car, the above definition allows the
gains of vertices on a path P to be larger than B and smaller than −B.18 Our algorithm, however,
does not compute paths (and even subpaths) of gain smaller than −B.

Throughout this paper charge drops are used by the algorithm only twice, in Appendices E.3.5
and E.3.6. It may be instructive for a reader to first think of the case where all charge drops are
0. In the following sections we define path structures that are studied throughout the paper.

B.1 Monotone Paths and Shortcuts

Definition B.2 (Monotone path). Let P = v1 . . . vk be a traversable path in G and let C be a charge
drop schedule for P .

• We say that P is ascending with respect to C if 0 = gCv1 ≤ gCvi ≤ gCvk , for every 1 ≤ i ≤ k. See
Figure 1(a).

17Note that d1 = 0, i.e., we do not drop charge at the first vertex.
18Note that a path of gain smaller than −B is not traversable.

17

𝑣8

𝑣7

𝑣6

𝑣5

𝑣3

𝑣1

𝑣4

𝑣2

𝑣8

𝑣7

𝑣6

𝑣5

𝑣9

𝑣9

𝑣10

𝑣10

𝑣13

𝑣12

𝑣11

𝑣11

𝑣12

𝑣13

𝑣14

𝑣14

𝑣15

𝑣15

𝑣16

𝑣16

𝑣17

𝑣17

𝑣18

𝑣18

Figure 9: In black: The original gains of P = v1 . . . v18. Red downward arrows correspond to charge
drops. In color: the gains of P with respect to the charge drops. After each charge drop we switch
color. Note that each colored path has matching gains to those of a corresponding subpath of P .

• We say that P is descending with respect to C if 0 = gCv1 ≥ gCvi ≥ gCvk , for every 1 ≤ i ≤ k. See
Figure 1(b).

We say that P is monotone with respect to C if it is either ascending or descending with respect to C.
We say that P is monotone if it is monotone with respect to the zero schedule.

Note that all ascending paths are strongly traversable. Also note that an ascending path might have
a descending subpath and vice versa.

Lemma B.3. If a path P = v1 . . . vk is ascending with respect to a charge drop schedule C, then P is
ascending with respect to the zero schedule.

Proof. Observe that gP,Cv1 = gPv1 = 0. Since P is ascending with respect to C, we get that gP,Cvi ≤ gP,Cvk

for every 1 ≤ i ≤ k. Since vk is the last vertex (and therefore encounters the largest charge drop), we
get that gPvi ≤ gPvk for every 1 ≤ i ≤ k. Therefore, for every 1 ≤ i ≤ k, it holds that

gPv1 = gP,Cv1 ≤ gP,Cvi ≤ gPvi ≤ gPvk .

Definition B.4 (Shortcut). We define an arc e = xy (not necessarily in A) to be a k-shortcut in
G if there is a path P = v1 . . . vk from x to y in G which is monotone with respect to a charge drop
schedule C. We say that the gain of the shortcut is g(e) = gC(P). We say that e is a shortcut in G if
it is a k-shortcut in G for some k. The shortcut e is ascending if P is ascending and descending if P
is descending. We say that e is a short shortcut if it is a k-shortcuts for k ∈ {2, 3}.

Note that we may have parallel shortcuts corresponding to different paths, but in this case we only
keep the one of largest gain.

It is convenient to think of A as a clique where some arcs may have gain −∞. Our algorithms are
going to compute sets of shortcuts in some base graph G. Based on such a set of shortcuts S, it
constructs a new graph G′ in which g(xy) for every arc xy is the maximum between g(xy) in G and
the gain of the shortcut xy in S. Our definitions of gain apply to the original graph or any graph that
we obtain when using this procedure.

The following lemma states a core concept of our shortcutting algorithm: Every monotone path has a
subpath that is a short monotone path.

18

Lemma B.5. Every monotone path P = v1 . . . vk with respect to a charge drop schedule C, where
t > 1, contains a short shortcut with respect to C.

Proof. Let gi = gP,Cvi for every 1 ≤ i ≤ k and denote gei = g(vi−1vi) − C(vi) for 1 < i ≤ k. Observe

that gP,Cvi =
∑i

j=2 g
e
j , for 1 < i ≤ k.

By contradiction, assume that P does not contain a short shortcut with respect to C. In particular
k > 4. Moreover, sign(gei) ̸= sign(gei+1) and gei ̸= 0 for every 1 < i < k (otherwise vi−1vivi+1 is
monotone with respect to a sub-schedule of C).

Assume P is descending with respect to C, the other case is symmetric. We prove by induction that
|ge2| ≥ |ge3| > . . . > |gek|.19 The base case holds since otherwise P is not descending with respect to C.
Let 2 < i < k, we prove that |gei | > |gei+1|. By contradiction, assume |gei | ≤ |gei+1|. It is easy to see
that vi−2vi−1vivi+1 is monotone with respect to C.

Thus, |ge2| ≥ |ge3| > . . . |gek|. Since P is descending with respect to C, we get gP,Cvk ≤ gP,Cvk−1 and
sign(gek) < 0 < sign(gek−1). Therefore |gek| ≥ |gek−1|, a contradiction.

The following lemma shows the relation between paths that reach full charge when stating with zero
charge, to ascending paths.

Lemma B.6. Let P be a path from x to y. If α0(P) = B, i.e., P is strongly traversable and it reaches
y with full charge, then P is ascending.

Proof. Denote P = v0 . . . vk. Since P can be traversed with no initial charge then gv0 = 0 ≤ gvi
for every 1 ≤ i ≤ k. By contradiction, assume there is i < k such that gvi > gvk . This means
that g(vi . . . vk) < 0 and therefore we reach vk with strictly less charge than vi, contradicting the
assumption that we can reach vk with full charge.

B.2 Arc-Bounded Paths

We next define arc-bounded paths, a core structure of our algorithm. A path P = v1 . . . vk is first-arc
bounded if the gain of every v ∈ P is between the gains of the first two vertices, see Figure 10(a)-(b).
We also defined arc-bounded paths with respect to charge drop schedules, see Figure 10(c)-(d).

Definition B.7 (Arc-bounded path). A path P = v1 . . . vk is first-arc-bounded, or alternatively v1v2-
bounded with respect to a charge drop schedule C if C does not drop charge at v2

20 and if one of the
following holds

• g(v1v2) ≥ 0 and 0 = gP,Cv1 ≤ gP,Cvi ≤ gP,Cv2 = g(v1v2), for every 1 ≤ i ≤ k. We say that P is a
v1v2vk path with respect to C.

• g(v1v2) ≤ 0 and g(v1v2) = gP,Cv2 ≤ gP,Cvi ≤ gP,Cv1 = 0, for every 1 ≤ i ≤ k. We say that P is a
v1v2vk path with respect to C.

Similarly, P is last arc-bounded, or alternatively vk−1vk-bounded with respect to C if C does not drop
charge at v1 and vk−1 and vk and if one of the following holds

• gC(vk−1vk) ≥ 0 and gP,Cvk−1 ≤ gP,Cvi ≤ gP,Cvk , for every 1 ≤ i ≤ k. We say that P is a v1vk−1vk path

with respect to C.

19Note that the first inequality is weak. This is similar to the definition of funnels in the next subsection (see
Definition B.8),

20Recall Definition B.1 which states that we don’t drop charge at v1.

19

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

𝑣7

𝑣8

𝑣9

𝑣5

𝑣6

𝑣7

𝑣8

𝑣9

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5
𝑣6

𝑣7

𝑣8

𝑣9

𝑣8𝑣7

𝑣9

𝑣6

(𝑐) (𝑑)

(𝑎) (𝑏)

𝑣1

𝑣2

𝑣3

𝑣4
𝑣8

𝑣5 𝑣7

𝑣8

𝑣7

𝑣6

𝑣5
𝑣3𝑣1

𝑣4

𝑣2

Figure 10: On the top: First-arc (left) and last-arc (right) bounded paths. Both paths are arc
bounded paths with respect to the zero schedule. On the bottom: First-arc (left) and last-arc (right)
bounded paths with respect to different charge drop schedules.

• gC(vk−1vk) < 0 and gP,Cvk ≤ gP,Cvi ≤ gP,Cvk−1, for every 1 ≤ i ≤ k. We say that P is a v1vk−1vk path

with respect to C.

We say that P is arc-bounded if it is either first-arc-bounded or last-arc-bounded. We say that P is
negative arc-bounded if the “bounding” arc is of negative gain.

B.3 Funnels

The following definition defines the structure funnel, see Figure 1(c)-(f). Funnels are defined with
respect to the zero charge drop schedule.

Definition B.8 (Funnels). A path P is said to be a funnel if it is arc-bounded with respect to the zero
schedule and does not contain any monotone path of length 2 or 3.

Lemma B.9. Let P = v0 . . . vk and denote ei = vi−1vi for i = 1, . . . k. P is a funnel if and only if the
following two conditions hold.

1. • If P is e1-bounded then |g(e1)| ≥ |g(e2)| > . . . |g(ek)| > 0, or

• If P is ek-bounded then |g(ek)| ≥ |g(ek−1)| > . . . > |g(e1)| > 0.

Note that all inequalities are strict except the first.

2. The sign of the arc gains are alternating, i.e., sign(g(ei)) = (−1)i+1 · sign(g(e1)) for every
1 ≤ i ≤ k.

Proof. Assume P is a funnel and that it is e1 bounded. The proof for the case that P is ek-bounded
is symmetric. The second property is immediate since a funnel does not contain 2-shortcuts. Since
P is e1-bounded it follows that |g(e1)| ≥ |g(e2)|. We prove by induction that |g(ei)| > |g(ei+1)| for

20

𝑏 ≤
𝐵

|𝑔 𝑣𝑖⋆ …𝑣𝑘 |

𝑣𝑖⋆

𝑣𝑘

𝑣1

𝑏 + 𝑔 𝑣1…𝑣𝑖⋆

𝑣𝑖

𝑣𝑗

𝐵

(a)

𝑏

≤
𝐵

|𝑔 𝑣𝑖⋆ …𝑣𝑘 |

𝑣𝑘
𝑣1

𝑏 + 𝑔 𝑣1…𝑣𝑖⋆

𝑣𝑖1 = 𝑣𝑖

𝑣𝑗

𝐵

𝑣𝑖0

𝑣𝑖2 = 𝑣𝑖⋆

(b)

Figure 11: Illustration of Lemma C.1. We start at v1 with b charge. The subpath vi . . . vj has the
lowest gain g(vi . . . vj) = mini′<j′ g(vi′ . . . vj′). As depicted, |g(vi . . . vj)| ≤ B. Moreover, every prefix
v1 . . . vt has gain g(v1 . . . vt) ≥ −b and therefore αb(P) ̸= −∞. The vertex of maximum gain is
vi⋆ = argmaxvi g(v1 . . . vi). If b+ g(v1 . . . vi⋆) ≤ B, see Figure (a), then αb(v1 . . . vi⋆) = b+ g(v1 . . . vi⋆).
Otherwise, see Figure (b), αb(v1 . . . vi⋆) = B. In both cases αb(v1 . . . vk) = αb(v1 . . . vi⋆) + g(vi⋆ . . . vk).

1 < i ≤ k − 1. The base case (|g(e2)| > |g(e3)|, note the strict inequality) follows since otherwise
e1e2e3 is a 3-shortcut. The inductive step is similar.

For the other direction, assume P is e1-bounded and |g(e1)| ≥ |g(e2)| > . . . |g(ek)| > 0 and also
sign(g(ei)) = (−1)i+1 · sign(g(e1)) for every 1 ≤ i ≤ k. The second property guarantees that P
does not contain 2-shortcuts and together with the first property we get that P does not contain
3-shortcuts.

As an immediate corollary of the above structural lemma, we observe that a subpath of a funnel is
also a funnel.

C Relating the Path Structures to α(·, ·)

We present several lemmas that relate monotone paths, arc-bounded paths and funnels to the α(·, ·)
values of G. We start with the following lemma that characterizes traversable paths. It states that a
path is traversable if and only if it has no subpath that loses more than B gain (charge). Moreover,
the lemma shows how to calculate αb(P) of a path P , where b ∈ [0, B], using the largest gain of a
vertex on P and g(P), see Figure 11.

Lemma C.1. Let P = v1 . . . vk and b ∈ [0, B]. Then

• αb(P) ≥ 0 if and only if for every 1 ≤ j ≤ k it holds that g(v1 . . . vj) ≥ −b and for every
1 ≤ j1 ≤ j2 ≤ k it holds that g(vj1 . . . vj2) ≥ −B.

• If αb(P) ≥ 0 then αb(P) = min{B, b+g(v1 . . . vi⋆)}+g(vi⋆ . . . vk), where vi⋆ = argmaxvi g(v1 . . . vi).

21

Proof. We begin by proving the first claim. The first direction (in which we assume αb(P) ≥ 0) is
trivial. Assume that for every 1 ≤ j ≤ k it holds that g(v1 . . . vj) ≥ −b and for every 1 ≤ j1 ≤ j2 ≤ k
it holds that g(vj1 . . . vj2) ≥ −B. We split into the following cases.

Case 1: b+ gvi < B for i = 1, . . . , k (Figure 11(a)): We prove by induction on i = 1, . . . , k that
αb(v1 . . . vi) = b + gvi . The base case is immediate αb(v1) = b = b + gv1 . Let 1 < i ≤ k and assume
that αb(v1 . . . vi−1) = b+ gvi−1 . Note that

αb(v1 . . . vi−1) + g(vi−1vi) = b+ gvi−1 + g(vi−1vi) = b+ gvi ≥ 0,

where the last inequality holds by the assumption. It follows that αb(v1 . . . vi) ≥ 0. Since in this case
we assume b + gvi < B for all i = 1, . . . , k, it follows that αb(v1 . . . vi) = b + gvi . We conclude that
αb(P) = b+ gvk ≥ 0.

Case 2: There is an 1 ≤ i ≤ k such that b+gvi ≥ B (Figure 11(b)): Let 1 ≤ i0 ≤ k be minimal
such that b + gvi0 ≥ B. Similarly to Case 1, we get that for every 1 ≤ i < i0, αb(v1 . . . vi) = b + gvi .
Note that

αb(v1 . . . vi0−1) + g(vi0−1gvi0) = b+ gvi0−1 + g(vi0−1vi0) = b+ gvi0 ≥ B,

and therefore αb(v1 . . . vi0) = B. Let i1 > i0 be minimal such that gvi1 ≥ gvi0 . Note that for every
i0 < j < i1, it holds that

0 ≤ B + g(vi0 . . . vj) = B + (gvj − gvi0) ≤ B,

where the first inequality follows by the statement of the lemma and the last inequality follows since
i0 < j < i1. Thus, for every i0 < j < i1, it holds that αb(v1 . . . vj) = B+(gvj−gvi0) and αb(v1 . . . vi1) =
B. By continuing this process we get a sequence of indices i0 < i1 < . . . < it for which αb(v1 . . . vij) =
B, for every 1 ≤ j ≤ t, and vit has the largest gain in P (that is it = i⋆ from the second statement of
the lemma). We prove by induction on i, for it ≤ i ≤ k, that αb(v1 . . . vi) = B + (gvi − gvit) ≥ 0 and
in particular αb(P) ≥ 0. The base case i = it holds since we already proved that αb(v1 . . . vit) = B.
Let it < i ≤ k. By the inductive hypothesis, we get that

αb(v1 . . . vi−1) + g(vi−1vi) = B + (gvi−1 − gvit) + g(vi−1vi) = B + (gvi − gvit) = B + g(vit . . . vi) ≥ 0,

where the inequality holds by the statement of the lemma. Thus, αb(v1 . . . vi) ≥ 0. Moreover
αb(v1 . . . vi−1) + g(vi−1vi) = B + (gvi − gvit) ≤ B and therefore αb(v1 . . . vi) = B + (gvi − gvit).

We now prove the second statement of the lemma. Assume αb(P) ≥ 0. We split to the same cases as
before.

Case 1: b + gvi < B for i = 1, . . . , k (Figure 11(a)): As we have seen αb(P) = b+ g(P). Thus

αb(P) = b+ g(P)

= b+ g(v1 . . . vi⋆) + g(vi⋆ . . . vk)

= min{B, b+ g(v1 . . . vi⋆)}+ g(vi⋆ . . . vk).

Case 2: there is 1 ≤ i ≤ k such that b + gvi ≥ B (Figure 11(b)): Recall the sequence of
prefix maxima vi1 , . . . vit on P with respect to the gains from the first part of the proof. It follows
that i⋆ = it and we proved that αb(P) = B + (gvk − gvi⋆). Therefore

αb(P) = B + (gvk − gvi⋆) = B + g(vi⋆ . . . vk) = min{B, b+ gvi⋆}+ g(vi⋆ . . . vk).

The following lemma is used extensively in order to lower bound αb(P), for a monotone path P and
b ∈ [0, B], by the gain of P .

22

Lemma C.2. Let P = v1 . . . vk be a monotone path with respect to a charge drop schedule C. Let
b ∈ [0, B].

• If P is descending with respect to C and gC(P) ≥ −b, then αb(P) ≥ b+ gC(P).

• If P is ascending with respect to C, then αb(P) = min{B, b + g(P)} ≥ min{B, b + gC(P)}. In
particular, P is strongly traversable.

Proof. We begin by proving the first claim. Since P is descending with respect to C, we get that for
every 1 ≤ i ≤ k, it holds that gvi ≥ gP,Cvi ≥ gC(P) ≥ −b. Let 1 ≤ j1 ≤ j2 ≤ k. Observe that

g(vj1 . . . vj2) ≥ gC(vj1 . . . vj2) = gP,Cvj2
− gP,Cvj1

≥ gP,Cvk
− gP,Cv1 = gC(P) ≥ −b ≥ −B.

Therefore, by Lemma C.1, αb(P) ≥ 0. Let vi⋆ be the vertex with the largest gain gvi⋆ in P . By
Lemma C.1, it holds that

αb(P) = min{B, b+ g(v1 . . . vi⋆)}+ g(vi⋆ . . . vk)

≥ min{B, b+ gC(v1 . . . vi⋆)}+ gC(vi⋆ . . . vk)
(1)
= b+ gC(v1 . . . vi⋆) + gC(vi⋆ . . . vk)

= b+ gC(P),

where Equality (1) holds since P is descending with respect to C, so gC(v1 . . . vi⋆) ≤ gP,Cv1 = 0.

We now prove the second claim. Let P = v1 . . . vk be an ascending path with respect to C. By
Lemma B.3, it follows that P is ascending with respect to the zero schedule. Since P is traversable,
it follows by Lemma C.1 that for every 1 ≤ j1 ≤ j2 ≤ k it holds that g(vj1 . . . gvj2) ≥ −B. Since P is
ascending, for every 1 ≤ i ≤ k it holds that gvi ≥ gv1 = 0 ≥ −b. Therefore, by Lemma C.1, we get
that αb(P) = min{B, b+ g(v1 . . . vk)} (note that since P is ascending, then vk is the vertex of largest
gain in P).

Let P = v1 . . . vk be a negative arc-bounded path. The following lemma states that if the (negative)
bounding arc of P has gain at least −B then P us traversable.

Lemma C.3. Let P = v1 . . . vk be a negative arc-bounded path with respect to a charge drop schedule
C. Let b ∈ [0, B].

• If P is first arc-bounded with respect to C and g(v1v2) ≥ −b, then αb(P) ≥ b+ gC(P).

• If P is last arc-bounded with respect to C and g(vk−1vk) ≥ −B and gC(P) ≥ −b, then αb(P) ≥
min{b+ gC(P), B + g(vk−1vk)}.

Proof. We begin by proving the first claim. Since P is first-arc bounded with respect to C, we get
that for every 1 ≤ i ≤ k, it holds that gvi ≥ gP,Cvi ≥ gP,Cv2 = g(v1v2) ≥ −b. Let 1 ≤ j1 ≤ j2 ≤ k.
Observe that

g(vj1 . . . vj2) ≥ gC(vj1 . . . vj2) = gP,Cvj2
− gP,Cvj1

(1)

≥ gP,Cv2 − gP,Cv1 = g(v1v2)− 0 ≥ −b ≥ −B,

where Inequality (1) follows since P is first-arc bounded with respect to C. Therefore, by Lemma C.1,
αb(P) ≥ 0. Let vi⋆ be the vertex with the largest gain gvi⋆ in P . By Lemma C.1, it holds that

αb(P) = min{B, b+ g(v1 . . . vi⋆)}+ g(vi⋆ . . . vk)

≥ min{B, b+ gC(v1 . . . vi⋆)}+ gC(vi⋆ . . . vk)
(1)
= b+ gC(v1 . . . vi⋆) + gC(vi⋆ . . . vk)

= b+ gC(P),

23

Figure 12: Generic structure of minimum energetic paths in the presence of negative cycles. If
αb(s, t) ≥ −∞, then there is a minimum energetic path from s to t of the form shown, where
C1, . . . , Ck are simple negative cycles and (xi, yi) is an entry-exit pair on Ci, for i = 1, 2, . . . , k. All
entries x1, x2, . . . , xk are distinct and all exits y1, y2, . . . , yk are distinct. The paths P1, P2, . . . , Pk+1

are simple but necessarily disjoint from the cycles C1, C2, . . . , Ck.

where Equality (1) holds since gC(v1 . . . vi⋆) ≤ gP,Cv1 = 0.

We now prove the second claim. Assume P is last arc bounded with respect to C. Since P is vk−1vk-
bounded (with respect to C) and g(vk−1vk) ≥ −B, it follows that there is no subpath vj1 . . . vj2 of
P of gain g(vj1 . . . vj2) < −B.21 Moreover, since P is last arc-bounded, for every 1 ≤ i ≤ k it holds

that gPvi ≥ gP,Cvk = gC(P) ≥ −b, where the last inequality holds by the assumption of the lemma.
Thus, by Lemma C.1, αb(P) ≥ 0. Since P is negative arc-bounded with respect to C, it follows that
gP,Cvi ≤ gP,Cvk−1 for every i = 1, . . . , k. In particular, since vk−1 accumulated the largest charge drop, we
get that gPvi ≤ gPvk−1

for every i = 1, . . . , k. Therefore, by Lemma C.1,

αb(P) = min{B, b+ g(v1 . . . vk−1)}+ g(vk−1vk)

= min{B + g(vk−1vk), b+ g(v1 . . . vk−1) + g(vk−1vk)}
= min{B + g(vk−1vk), b+ g(P)}.

The following structural definition and lemma are from Dorfman et al. [5].

Definition C.4 (Entry-exit pairs [5]). Let C be a positive gain cycle in G = (V,A, g) and let B be
the capacity of the battery. A pair of vertices (x, y) on C is an entry-exit pair of C if the car can start
at x with an empty battery and eventually get to y, possibly after going several times around the cycle,
with a full battery, i.e., with a charge of B.

The following lemma characterise the structure of optimal paths, see Figure 12.

Lemma C.5 (Lemma 2.6 of [5]). If there is a traversable path P from s to t in G, then there is
a traversable path P ′ from s to t such that αb(P

′) ≥ αb(P), for every b ∈ [0, B], where P ′ has the
following form: either P ′ is simple, or there is a sequence C1, C2, . . . , Ck of simple positive gain cycles,
where k < n, with entry-exit pairs (x1, y1), (x2, y2), . . . , (xk, yk) on them, such that P ′ is composed of
a simple path from s to x1, followed by sufficiently many traversals of C1 that end in y1 with a full
battery, followed by a simple path from y1 to x2, followed by sufficiently many traversals of C2 that end
in y2 with a full battery, and so on, and finally a simple path from yk to t. Furthermore, all entries
x1, x2, . . . , xk are distinct, and all exits y1, y2, . . . , yk are distinct.

D Overview of the Algorithm

The algorithm is composed of two stages. The goal of first stage, which is described in Appendix E,
is to store information about shortcuts that correspond to simple paths. In the second stage, which is
described in Appendix H, we use the stored information and compute αB(s, t) for every s, t ∈ V .

21Indeed, by contradiction assume such j1 < j2 exist. Then gC(vj1 . . . vj2) ≤ g(vj1 . . . vj2) < −B so |gC,P
vj1

− gC,P
vj2

| > B.

Together with the inequality |gC,P
vk−1

− gC,P
vk | ≤ B, we get a contradiction to P being arc-bounded with respect to C.

24

D.1 Stage I

This stage performs O
(
nα log2 n

)
iterations. To clarify the presentation we partition these iterations

into O
(
log2 n

)
outer-iterations, which are performed in Compute-Shortcuts (see Figure 13), where

each of them calls the procedure Update-Shortcuts(M) which performs O(nα) inner-iterations.

In each inner-iteration we take M ∈ Rn×n, our current table of shortcuts, and improve it several times.
These improvements happen using two procedures Short-Shortcuts and Long-Shortcuts, which take M
and return an improved table M ′. Both procedures perform computations solely on GM , which is the
complete graph whose arc gains are defined according to M , i.e., g(uv) = M [u][v] for every u, v ∈ V .

At inner-iteration i, we store the shortcuts (and more information) in a data structure D. The data
structure is a union of 3 tables. Let x, y, z ∈ V and let GM be the current graph of interest. The
values in D are defined with respect to GM .

• D[x][y] is the maximum gain of a monotone path from x to y we have encountered.22

• D[xy][z] is the maximum gain of a xyz path or a xyz path.

• D[x][yz] is the maximum gain of a xyz path or a xyz path.

We show in Corollary G.2 that these values also correspond to paths in G with at least as much gain.

The following definition helps us to measure the quality of the values stored in D

Definition D.1. Let P = v1 . . . vk be a path in GM . We say that the data structure D dominates P
with respect to a charge drop schedule C if

• If P is v1v2-bounded with respect to C, then D[v1v2][vk] ≥ gC(P).

• If P is vk−1vk-bounded with respect to C, then D[v1][vk−1vk] ≥ gC(P).

• If P is monotone with respect to C, then D[v1][vk] ≥ gC(P).

If C is the zero schedule we just say that D dominates P .

Let M be the final table of shortcuts computed during Stage I. Theorem F.1, states that for any simple
monotone path P = v0 . . . vk in G, w.h.p., M [v0][vk] ≥ g(P). That is, the gain of the arc (v0, vk) in GM

is larger than g(P). This theorem follows from Lemma F.2 which shows that if P is a monotone path
from v to w in GMi where Mi is the shortcuts table at the beginning of outer-iteration i, then there
exists a monotone path P ′ from v to w in GMi+1 , where Mi+1 is the shortcuts table at the beginning

of outer-iteration i+ 1, such that g(P ′) ≥ g(P) and |P ′| =
(
1− Ω

(
1

logn

))
|P |.

D.2 Stage II

We begin by utilizing the shortcuts obtained from Stage I and build an auxiliary graph H = (V 0 ∪
V B, E(H)), where V b = {vb | v ∈ V } for b = 0, B represents that we are at v with at least b charge. An
arc ub1vb2 ∈ E(H) represents that αb1(u, v) ≥ b2. We add to E(H) arcs that we can easily deduce by
the shortcuts of Stage I. We compute the transitive closure H⋆ of H that has even stronger relations.
We prove in Theorem H.12, that for every s, t ∈ V we have αB(s, t) = B if and only if sBtB ∈ E(H⋆).

Recall the “cycle-hopping” structure of optimal cycles given by Lemma C.5. Let s, t ∈ V and let P
be an optimal path from s to t (i.e., αB(P) = αB(s, t)) that is structured as in Lemma C.5. Let
(x1, y1), . . . (xk, yk) be the entry-exit pairs as in Lemma C.5. By the discussion above, sByBk ∈ E(H⋆),

22This value might be negative, or even −∞. This is true also for the next entries.

25

Compute-Shortcuts(G = (V,A, g)):

M ← ConstMarix(n, n,−∞)

for i = 1 . . . n do
M [i][i]← 0
for (i, j) ∈ E do

M [i][j]← g(i, j)

for t = 1 . . .Θ(log2 n) do
M ← Update-Shortcuts(M)

return M

Update-Shortcuts(M):

r ← Θ(nα)
M ′ ←M
for i = 1 . . . r do

rand ∼ U [0, 1]
if rand < log(n)/r :

M ′ ← max{M ′,Long-Shortcuts(M)}
M ← Short-Shortcuts(M)

return max{M,M ′}

Figure 13: Main procedure. Finds shortcuts corresponding to monotone simple paths. It combines
many rounds of finding short shortcuts, with rare applications of finding shortcuts that correspond to
longer paths (“long shortcuts”)

thus H⋆ allows us to skip all of the cycle-hoping and focus on the last path from yk to t. This path
is simple and we start traversing it with full charge. We prove in Lemma H.15 that αB(yk, t) can be
derived from a value in D that correspond to a funnel in GM , where M is taken from the last iteration
of Stage I.

E Stage I - Algorithm for finding shortcuts

The goal of algorithm Compute-Shortcuts(G) (see Figure 13) is to find shortcuts corresponding to
monotone simple paths in G. The algorithm proceeds in log2 n outer-iterations. Each iteration is
implemented using the procedure Update-Shortcuts(M), which gets the shortcuts table M of the
previous iteration and computes new shortcuts, based on the graph defined by M . We claim (see
Lemma F.2) that in each iteration, a monotone path P , consisting of shortcuts of the previous iteration,
can be replaced by a shorter path Q (consisting of new shortcuts) of length shorter by a factor of
1− c

logn , for some constant c.

The procedure Update-Shortcuts(M), which implements an outer-iteration, proceeds as follows. We
perform Õ(nα) rounds, which we view as inner-iterations, where α = 0.5 is a constant that we set later.
In each round, we call the procedure Short-Shortcuts(M) which finds all short shortcuts in GM and
updates M accordingly, see Figure 14. Also, with a small probability p = Θ̃ (n−α) during a round, we
also call the procedure Long-Shortcuts(M) which aims to find some k-shortcuts in GM , where k > 3.
This procedure also updates M .

Intuitively, given a monotone path P in GM , Update-Shortcuts(M) aims to reduce its length by
computing shortcuts in GM that can replace monotone subpaths of P . Let P1, . . . , Pnα be the cor-
responding shortcutted versions of P with respect to the updated shortcuts tables M1, . . . ,Mnα . If
we succeeded in reducing the length of P (say by a constant factor) by the Õ(nα) applications of
Short-Shortcuts (i.e. |Pnα | ≤ c|P |), then we achieved our goal. Otherwise, in most of the iterations we
did not find many short shortcuts on Pi in GMi , and therefore Pi mostly consists of funnels (and some
of them can be long). For this reason, with small probability (enough to “hit” such a round) we call
Long-Shortcuts which finds some shortcuts that correspond to monotone paths that contain funnels.
We prove in Lemma F.11, which is the central lemma of this paper, that these shortcuts are enough.

Each of these procedures computes a data structure D storing information about monotone and arc-
bounded paths in GM . At the end of each such call we update M with new shortcuts based on D.

The algorithm maintains the following invariant.

Invariant 1. Let M be the shortcuts table of the current inner-iteration. The following holds through-
out the inner-iteration:

26

(A) If D[xy][z] ̸= −∞ then there is a traversable path P = xy . . . z in GM and a charge drop
schedule C such that P is xy-bounded with respect to C and gC(P) = D[xy][z]. We say that P
is realizing D[xy][z].

(B) If D[x][yz] ̸= −∞ then there is a traversable path P = x . . . yz in GM and a charge drop
schedule C such that P is yz-bounded with respect to C and gC(P) ≥ D[x][yz]. We say that P
is realizing D[x][yz].

(C) If D[x][y] ̸= −∞ then there is a traversable path P = x . . . y in GM and a charge drop schedule C
such that P is monotone with respect to C and gC(P) = D[x][y]. Moreover, if D[x][y] ≥ 0, then P
is strongly traversable. We say that P is realizing D[x][y].

The full details of the procedures Short-Shortcuts and Long-Shortcuts are explained in Appendices E.2
and E.3.6, respectively.

E.1 Initializing the data structure

At the beginning of Short-Shortcuts(M) and Long-Shortcuts(M), we get a shortcuts table M and
initialize the data structure D with respect to GM . This initialization creates trivial paths: For every
x, y ∈ V we set D[x][y] = M [x][y] and D[x][xy] = D[xy][y] = M [x][y].

E.2 Short Shortcuts

The goal of this procedure is to find shortcuts that dominate all (ascending/descending) monotone
paths in GM of length at most 3, see Figures 14 and 15. Finding 2-shortcuts is easy. We find them
all by simply checking for every triplet x, y, z ∈ V whether xyz is an ascending path in GM , see
Figure 15(a2), and if not, we create a descending shortcut by dropping the right amount of charge, see
Figure 15(b1)-(b3). We classify monotone paths xyaz of length 3 according to the eight possibilities
for the sign of M [x][y],M [y][a] and M [a][z]. In seven out of the eight cases we compute shortcuts that
dominate these paths similarly to the computation of 2-shortcuts: For every x, y, z ∈ V we concatenate
the arc xy with the length 2 shortcut from y to z that were previously computed. We then check
whether this results in an ascending shortcut, see Figure 15(a1), and otherwise we perform charge
drops to get a descending shortcut, see Figure 15(c1)− (c6). This is done in Trivial-Shortcuts(M,D),
see Figure 15. This procedure captures almost all of the possible monotone paths of length at most 3,
except for three cases shown in Figure 14.

The three special cases of monotone paths xyaz are the following. In all cases the signs of the arc
gains alternate between positive and negative

Case 1: In this case the sign pattern of M [x][y],M [y][a],M [a][z] is the same as in Figure 15c(3).
That is, M [x][y],M [a][z] ≥ 0 and M [y][a] ≤ 0. Here the path xyaz is ascending and therefore we
create an ascending shortcut from x to z, see Figure 14(a).

The last two cases are associated with the sign pattern M [x][y],M [a][z] ≤ 0 and M [y][a] ≥ 0.

Case 2: The path xyaz satisfies ga ∈ [gy, gx]. In this case either gz ≤ gy, meaning that xyaz is
descending, or gz ∈ [gy, ga]. In the latter case we can perform a charge drop at z to make xyaz
descending with respect to the appropriate schedule, see Figure 14(b).

Case 3: The path xyaz satisfies ga > gx(= 0). In this case, in order to make xyaz descending, we
perform a charge drop at a such that its gain after the drop is the same as the gain of x (which is
zero). If after this charge drop z has larger gain than y, then we also perform a charge drop at z so
that it matches the gain of y, see Figure 14(c).

The computation of these three cases of shortcuts is done in Short-Shortcuts(M) (see Figure 14) as
follows. For every triplet x, y, z ∈ V we do the following. In all cases we aim to compute shortcuts
with gains as large as possible.

27

Short-Shortcuts(M):
D ← Init−DS(M)

Trivial-Shortcuts(M,D) // Adding to D both 2-shortcuts and easy 3-shortcuts in GM

for y, z ∈ V do // Creating 2D range trees for yaz paths
Tyz ← RT (M [y][·],M [y][·] +M [·][z])
T ′
yz ← RT (M [y][·],M [·][z])

for x, y, z ∈ V do // 3-shortcuts
if M [x][y] ≥ 0 :

(−, k2)← Tyz.range(k1 ∈ [−M [x][y], 0]).max k2()
// largest gain at z without going below x

if M [x][y] + k2 ≥M [x][y] : // ascending shortcut
D[x][z]← max{D[x][z],M [x][y] + k2}

if M [x][y] ≤ 0 :

(−, k2)← Tyz.range(k1 ∈ [0, |M [x][y]|]).max k2()
// Largest gain at z without going above x

if M [x][y] ≥M [x][y] + k2 ≥ −B : // descending shortcut
D[x][z]← max{D[x][z],M [x][y] + k2}

if M [x][y] + k2 ≥M [x][y] : // descending shortcut, charge drop is needed at z
D[x][z]← max{D[x][z],M [x][y]}

(−,M [a][z])← T ′
yz.range(k1 ∈ [|M [x][y]|,∞)).max k2()

// Largest gain of last arc while going above x
D[x][z]← max{D[x][z],min{M [x][y],M [a][z]}} // Charge drop at a and z

return D.shortcuts

𝑎
𝑥

𝑦

𝑧

𝑀 𝑥 𝑦

𝑀 𝑎 𝑧

|𝑀 𝑦 𝑎 | 𝑥

𝑧

𝑦

𝑎

|𝑀 𝑥 𝑦 |

𝑀 𝑦 𝑎

|𝑀 𝑎 𝑧 |

(𝑏) (𝑐)(𝑎)

𝑥

𝑧

𝑦

𝑎

|𝑀 𝑥 𝑦 | 𝑀 𝑦 𝑎

|𝑀 𝑎 𝑧 |

Figure 14: Hardest cases to compute 3-shortcuts. In these cases the signs of the arc gains alternate
between positive and negative.

Assume M [x][y] > 0, we try to find shortcuts corresponding to Case 1. That is, we find a ∈ V
such that xyaz is ascending and a satisfies M [y][a] ≤ 0 and M [a][z] ≥ 0, see Figure 14(a). The
computation of a ∈ V is done as follows. Among all nonpositive gain arcs ya whose gain in absolute
value is smaller than the gain of xy, we want to find the one which maximized M [y][a] +M [a][z] and
M [y][a]+M [a][z] ≥ 0. To make this search efficient we store all the pairs (M [y][a],M [y][a]+M [a][z]),
for a ∈ V , in a 2D range tree Tyz. Creating such a range tree Tyz can be done in O(n log2 n) time.
Finally, our update for the triplet x, y, z ∈ V will find amongst pairs in Tyz in which the first keyM [y][a]
satisfies M [y][a] ∈ [−M [x][y], 0], the pair in which its second key M [y][a]+M [a][z] is maximal.23 This
is done in O(log2 n) time both in the construction and initialization.

23It is enough to use a range tree in which the secondary structures are heaps rather than search trees because we only
need to find the maximum in every secondary data structure. This saves a logn factor.

28

Trivial-Shortcuts(M,D):
M2,M3 ← ConstMatrix(n, n,−∞) // Matrices for shortcuts of paths of length 2 or 3
for x, y, z ∈ V do // 2-shortcuts

if M [x][y] ≥ 0 ∧M [y][z] ≥ 0 : // ascending shortcuts
M2[x][z]← max{M2[x][z],M [x][y] +M [y][z]}

else: // descending shortcuts with charge drop
if min{M [x][y], 0}+min{M [y][z], 0} ≥ −B :

M2[x][z]← max{M2[x][z],min{M [x][y], 0}+min{M [y][z], 0}}
for x, y, z ∈ V do // easy 3-shortcuts

if M [x][y] ≥ 0 ∧M2[y][z] ≥ 0 : // ascending shortcuts
M3[x][z]← max{M3[x][z],M [x][y] +M2[y][z]}

else: // descending shortcuts with charge drop
if min{M [x][y], 0}+min{M2[y][z], 0} ≥ −B :

M2[x][z]← max{M2[x][z],min{M [x][y], 0}+min{M2[y][z], 0}}
for x, z ∈ V do

D[x][z]← max{D[x][z],M2[x][z],M3[x][z]}

𝑦

𝑥

𝑧

𝑦

𝑥

𝑎

𝑧 𝑦

𝑥
𝑧𝑦

𝑥

𝑧
𝑦

𝑥
𝑧

𝑥
𝑦

𝑎

𝑧

𝑥
𝑦
𝑎

𝑧

𝑦

𝑥

𝑧
𝑎

𝑦 𝑧

𝑥
𝑥

𝑦

𝑧
𝑥

𝑎

𝑎1 𝑎2 𝑏1 𝑏2 𝑏3

𝑐1
𝑦

𝑎
𝑧

𝑐2 𝑐3 𝑐4 𝑐5 𝑐6

𝑎

Figure 15: All cases of easy shortcuts, the dashed yellow lines represent the maximum and minimum
gains in the paths (with respect to the charge drop schedule). The depicted charge drop schedules
are optimal, i.e., the paths are descending with largest possible gain. Figures (a1), (a2) are the
only ascending shortcuts. Figures (b1)-(b3) are descending 2-shortcuts with respect to a charge drop
schedule that cancels every positive gain arc. Figures (c1)-(c6) are descending 3-shortcuts. Note that
the suffix yaz of these paths (except for (c3)) has the same schedule as in (b1)-(b3). Case (c3) is special
since if z was higher, then xyaz was ascending. This is handled in Short-Shortcuts(M).

Assume M [x][y] < 0, finding shortcuts corresponding to Case 2 is done similarly to shortcuts corre-
sponding to Case 1 by utilizing the range tree Tyz, see Figure 14(b). We find shortcuts corresponding
to Case 3 as follows. Among all a ∈ V such that M [y][a] ≥ |M [x][y]|, we find a ∈ V such that M [a][z]
is maximized, see Figure 14(c). To make this search efficient we store all the pairs (M [y][a],M [a][z]),
for a ∈ V , in a 2D range tree T ′

yz, for every pair y, z ∈ V .

The pseudocode of Short-Shortcuts(M) is given in Figure 14. This pseudocode, and the pseudocodes
of the algorithms in the next sections, use range trees as follows. Let K1 and K2 be arrays of length n.
We denote by RT (K1[·],K2[·]) the operation of creating a 2D range tree with key pairs (K1[i],K2[i]),
for 1 ≤ i ≤ n.

Lemma E.1. Let P be a monotone path in GM of length k ∈ {2, 3} with respect to a charge drop

29

schedule C. Then at the end of Short-Shortcuts(M), D dominates P with respect to C.

Proof. Assume P = xyz is of length 2. Since P is traversable we get that M [x][y] +M [y][z] ≥ −B.
We split into cases according to the signs of the arc gains of P , see Figure 15 Cases (a2) and Cases
(b1)− (b3).

Case 1: M [x][y],M [y][z] ≥ 0 (Figure 15(a2)): Clearly P is ascending with respect to the
zero schedule and clearly from the pseudocode of Trivial-Shortcuts(M,D) (see Figure 15) D[x][z] ≥
M2[x][z] ≥M [x][y] +M [y][z] = g(P).

Case 2: M [x][y],M [y][z] < 0 (Figure 15(b1)): In this case P is descending with respect to
the zero schedule. By the pseudocode of Trivial-Shortcuts(M,D), we get that D[x][z] ≥ M2[x][z] ≥
M [x][y] +M [y][z] = g(P).

Case 3: M [x][y] ≥ 0 and M [y][z] < 0 (Figure 15(b2)): Therefore P must be descending with
respect to C. Since gP,Cy ≤ gP,Cx = 0, it follows that C(y) ≥M [x][y] and therefore gC(P) = (M [x][y]−
C(y)) + (M [y][z]− C(z)) ≤M [y][z]. Therefore, from the pseudocode of Trivial-Shortcuts(M,D),

D[x][z] ≥M2[x][z] ≥ min{M [x][y], 0}+min{M [y][z], 0} = M [y][z] ≥ gC(P).

Case 4: M [x][y] < 0 and M [y][z] ≥ 0 (Figure 15(b3)): Therefore P must be descending with
respect to C. Since gP,Cy ≥ gP,Cz , it follows that C(z) ≥ M [y][z] and therefore gC(P) = (M [x][y] −
g(y)) + (M [y][z]− C(z)) ≤M [x][y]. Therefore, from the pseudocode of Trivial-Shortcuts(M,D),

D[x][z] ≥M2[x][z] ≥ min{M [x][y], 0}+min{M [y][z], 0} = M [x][y] ≥ gC(P).

Assume P = xyaz is of length 3. Since P is traversable, we get by Lemma C.1 that M [x][y]+M [y][a]+
M [a][z] ≥ −B and M [y][a] +M [a][z] ≥ −B.24 We split the rest of the proof into cases according to
the signs of the arc gains of P , see Figure 15 cases (a1) and cases (c1) − (c6) and Figure 14 cases
(a)− (c).

Case 1: M [x][y],M [y][a],M [a][z] ≥ 0 (Figure 15(a1)): In this case P is ascending with respect
to the zero schedule and moreover yaz is ascending. By Case (a2) it holds that after the first for loop
M2[y][z] ≥ g(yaz). Therefore, after the second for loop in Trivial-Shortcuts(M,D), we get that

D[x][z] ≥M3[x][z] ≥M [x][y] +M2[y][z] ≥M [x][y] + g(yaz) = g(P).

Case 2.1: M [x][y] ≥ 0 and M [y][a] < 0 and M [a][z] ≥ 0 and P is ascending (Fig-
ure 14(a)): Since P is ascending with respect to C, it follows by Lemma B.3 that P is ascending
with respect to the zero schedule. Therefore, |M [y][a]| ≤ M [x][y] and M [y][a] +M [a][z] ≥ 0. Thus,
the pair (M [y][a′],M [y][a′] + M [a′][z]) in Tyz with largest k2 = M [y][a′] + M [a′][z] that satisfies
M [y][a′] ∈ [−M [x][y], 0], satisfies k2 ≥ M [y][a] + M [a][z] ≥ 0. Therefore, from the pseudocode of
Short-Shortcuts(M),

D[x][z] ≥M [x][y] + k2 ≥M [x][y] +M [y][a] +M [a][z] = g(P).

Case 2.2: M [x][y] ≥ 0 and M [y][a] < 0 and M [a][z] ≥ 0 and P is descending (Fig-
ure 15(c3)): Since P is descending with respect to C and M [x][y],M [a][z] ≥ 0 and these are the
first and last arcs of P , it follows that C(y) ≥ M [x][y] and C(z) ≥ M [a][z]. Therefore, from the
pseudocode of Trivial-Shortcuts(M,D),

D[x][z] ≥M3[x][z] ≥ min{M [x][y], 0}+min{M2[y][z], 0} = min{M2[y][z], 0}.
24We mention these properties since Trivial-Shortcuts checks if the assign values are at least −B.

30

To see why gC(P) ≤ min{M2[y][z], 0}, observe that gC(P) ≤ 0 by monotonicity and that

gC(P) ≤ (M [x][y]− C(y)) +M [y][a] + (M [a][z]− C(z))

≤M [y][a] = min{M [y][a], 0}+min{M [a][z], 0} ≤M2[y][z],

where the last inequality also follows from the pseudocode of Trivial-Shortcuts(M,D).

Case 3: M [x][y],M [y][a] ≥ 0 and M [a][z] < 0 (Figure 15(c2)): Since the last arc satisfies
M [a][z] < 0, it follows that P is descending with respect to C. Therefore, from the pseudocode of
Trivial-Shortcuts(M,D),

D[x][z] ≥M3[x][z] ≥ min{M [x][y], 0}+min{M2[y][z], 0} = min{M2[y][z], 0}

To see why gC(P) ≤ min{M2[y][z], 0}, observe that gC(P) ≤ 0 by monotonicity. Moreover, since the
first two arcs have nonnegative gain we get that C(y) + C(a) ≥ M [x][y] + M [y][a]. Therefore, from
the pseudocode of Trivial-Shortcuts(M,D),

gC(P) ≤ (M [x][y]− C(y)) + (M [y][a]− C(a)) +M [a][z]

≤M [a][z] = min{M [y][a], 0}+min{M [a][z], 0} ≤M2[y][z],

where the last inequality also follows from the pseudocode of Trivial-Shortcuts(M,D).

Case 4: M [x][y] ≥ 0 and M [y][a],M [a][z] < 0 (Figure 15(c1)): Since the last arc satisfies
M [a][z] < 0, it follows that P is descending with respect to C. Therefore, from the pseudocode of
Trivial-Shortcuts(M,D),

D[x][z] ≥M3[x][z] ≥ min{M [x][y], 0}+min{M2[y][z], 0} = min{M2[y][z], 0}.

To see why gC(P) ≤ min{M2[y][z], 0}, observe that gC(P) ≤ 0 by monotonicity. Since the first arc xy
has nonnegative gain, C(y) ≥M [x][y]. Therefore,

gC(P) ≤ (M [x][y]− C(y)) +M [y][a] +M [a][z]

≤M [y][a] +M [a][z] = min{M [y][a], 0}+min{M [a][z], 0} ≤M2[y][z],

where the last inequality follows from the pseudocode of Trivial-Shortcuts(M,D).

Case 5: M [x][y],M [y][a],M [a][z] < 0 (Figure 15(c4)): Since the first arc xy has nega-
tive gain, it holds that P is descending with respect to C. It follows from the pseudocode of
Trivial-Shortcuts(M,D) thatM2[y][z] ≥ min{M [y][a], 0}+min{M [a][z], 0} = M [y][a]+M [a][z]. There-
fore,

D[x][z] ≥M3[x][z]
(1)

≥ min{M [x][y], 0}+min{M2[y][z], 0} ≥M [x][y] +M [y][a] +M [a][z] = g(P) ≤ gC(P),

where Inequality (1) follows from the pseudocode of Trivial-Shortcuts(M,D).

Case 6: M [x][y],M [y][a] < 0 and M [a][z] ≥ 0 (Figure 15(c5)): Since the first arc xy has
negative gain, it holds that P is descending with respect to C. Since the last arc az is of positive
gain, we get that C(z) ≥ M [a][z]. It follows from the pseudocode of Trivial-Shortcuts(M,D) that
M2[y][z] ≥ min{M [y][a], 0}+min{M [a][z], 0} = M [y][a]. Therefore,

D[x][z] ≥M3[x][z]
(1)

≥ min{M [x][y], 0}+min{M2[y][z], 0} ≥M [x][y] +M [y][a]

≥M [x][y] +M [y][a] + (M [a][z]− C(z)) ≥ gC(P).

where Inequality (1) follows from the pseudocode of Trivial-Shortcuts(M,D).

31

Case 7: M [x][y] < 0 and M [y][a],M [a][z] ≥ 0 (Figure 15(c6)): Since the first arc xy has
negative gain, it holds that P is descending with respect to C. It follows from the pseudocode of
Trivial-Shortcuts(M,D) that M2[y][z] ≥M [y][a] +M [a][z] ≥ 0. Therefore,

D[x][z] ≥M3[x][z]
(1)

≥ min{M [x][y], 0}+min{M2[y][z], 0} = 0 ≥ gC(P),

where Inequality (1) follows from the pseudocode of Trivial-Shortcuts(M,D).

Case 8: M [x][y] < 0 and M [y][a] ≥ 0 and M [a][z] < 0 (Figure 14(b) − (c)): We split into
sub-cases

Sub-Case 8.1: M [y][a] ∈ [0, |M [x][y]|]: Therefore, the pair (k1, k2) = (M [y][a′],M [y][a′] +
M [a′][z]) in Tyz with largest k2 = M [y][a′] + M [a′][z] that satisfies k1 = M [y][a′] ∈ [0,M [x][y]|],
satisfies k2 ≥ M [y][a] +M [a][z]. Thus, by the two inner-if statements in Short-Shortcuts(M), we get
that

D[x][z] ≥ min{M [x][y],M [x][y] + k2}
≥ min{M [x][y],M [x][y] +M [y][a] +M [a][z]}
= min{M [x][y], g(P)} ≥ gC(P),

where the last inequality follows since P is descending with respect to C so M [x][y] ≥ gP,Cy ≥ gC(P).

Sub-Case 8.2: M [y][a] ≥ |M [x][y]|: Therefore, the pair (k1, k2) = (M [y][a′],M [a′][z]) in T ′
yz with

largest k2 = M [a′][z] that satisfies k1 = M [y][a′] ≥ |M [x][y]|, satisfies k2 ≥ M [a][z]. Thus, by last
assignment to D in Short-Shortcuts(M), we get that

D[x][z] ≥ min{M [x][y], k2} ≥ min{M [x][y],M [a][z]}. (2)

Since P is descending with respect to C, it holds that

(M [x][y]− C(y)) + (M [y][a]− C(a)) = gP,Ca ≤ gP,Cx = 0

and therefore

gC(P) = (M [x][y]− C(y)) + (M [y][a]− C(a)) + (M [a][z]− C(Z)) ≤M [a][z]− C(Z) ≤M [a][z]. (3)

Similarly, since P is descending with respect to C, we get that

gC(P) ≤ gP,Cy = (M [x][y]− C(y)) ≤M [x][y]. (4)

By combining Equations (2),(3),(4), we get that

D[x][z] ≥ min{M [x][y],M [a][z]} ≥ gC(P).

Lemma E.2. Procedure Trivial-Shortcuts(M,D) maintains Invariant 1(C).

Proof. We prove that every time Algorithm Trivial-Shortcuts(M,D) makes an assignment to D[x][z]
then there is a path P from x to z and a charge drop schedule C such that P is monotone with respect
to C and gC(P) = D[x][z]. We split the proof into cases:

Case 1: D[x][z] = M2[x][z] = M [x][y] + M [y][z]: The algorithm performs this assignment
when M [x][y],M [y][z] ≥ 0. In particular xyz is ascending with respect to the zero schedule and
g(xyz) = D[x][z]. Moreover, by Lemma C.2, P is strongly traversable.

32

Case 2: D[x][z] = M2[x][z] = min{M [x][y], 0} + min{M [y][z], 0} ≥ −B: The algorithm
performs this assignment when either M [x][y] < 0 or M [y][z] < 0. Let P = xyz. We apply the
following charge drop schedule C: If M [x][y] ≥ 0, then C(y) = M [x][y] and if M [y][z] ≥ 0, then C(z) =
M [y][z]. It is easy to see that P is descending with respect to C and that gC(P) = min{M [x][y], 0}+
min{M [y][z], 0}.
Case 3: D[x][z] = M3[x][z] = M [x][y] + M2[y][z]: The algorithm performs this assignment
when M [x][y],M2[y][z] ≥ 0. By Case 1 above, M2[y][z] ≥ 0 implies that there is an ascending path
yaz, with respect to the zero schedule, of in GM . Therefore, xyaz is ascending with respect to the
zero schedule.

Case 4: D[x][z] = M3[x][z] = min{M [x][y], 0} + min{M2[y][z], 0} ≥ −B: The algorithm
performs this assignment when either M [x][y] < 0 or M2[y][z] < 0. We split into sub-cases:

Case 4.1: M2[y][z] ≥ 0: This means that M [x][y] < 0 and therefore D[x][z] = M [x][y]. Since
M2[y][z] ≥ 0, it follows by the pseudocode of Trivial-Shortcuts(M,D) thatM2[y][z] = M [y][a]+M [a][z]
where a ∈ V and M [y][a],M [a][z] ≥ 0. Let P = xyaz and consider the charge drop schedule C where
C(a) = M [y][a] and C(z) = M [a][z]. It is easy to see that P is descending with respect to C (P is
traversable since gC(P) = M [x][y] = D[x][z] ≥ −B).

Case 4.2: M2[y][z] < 0: Therefore M2[y][z] = min{M [y][a], 0} + min{M [a][z], 0} for some a ∈ V .
Moreover D[x][z] = min{M [x][y], 0}+M2[y][a]. Let P = xyaz and consider the charge drop schedule
C where C(y) = max{M [x][y], 0} and C(a) = max{M [y][a], 0} and C(z) = max{M [a][z], 0}. Observe
that

gC(P) = (M [x][y]−max{M [x][y], 0}) + (M [y][a]−max{M [y][a], 0}) + (M [a][z]−max{M [a][z], 0})
= min{M [x][y], 0}+min{M [y][a], 0}+min{M [y][z], 0}
= D[x][z] ≥ −B.

Thus, P is traversable.

Lemma E.3. Procedure Short-Shortcuts(M) maintains Invariant 1(C).

Proof. We prove that every time Short-Shortcuts(M) makes an assignment to D[x][z] then there is a
monotone path P with respect to a charge drop schedule C from x to z such that gC(P) = D[x][z].

By Lemma E.2 it is enough to consider only assignments made after executing Trivial-Shortcuts(M,D)
in Short-Shortcuts(M). These assignments correspond to monotone paths of length 3 that contain
arcs of positive and negative gain, see Figure 14. Consider such an assignment associated with triplet
x, y, z ∈ V .

Assume M [x][y] < 0, we split into cases according to the assignment of the algorithm in the pseu-
docode.

Case 1: D[x][z] = M [x][y] + k2: That is, the algorithm assigned D[x][z] = M [x][y] +M [y][a] +
M [a][z], where a ∈ V satisfiesM [y][a] ∈ [0, |M [x][y]|] and −B ≤M [x][y]+M [y][a]+M [y][z] ≤M [x][y],
See Figure 14(b). Consider the path P = xyaz, clearly g(P) = D[x][z]. It holds that

gx = 0, gy = M [x][y] < 0 = gx, ga = M [x][y] +M [y][a] ≤ 0 = gx,

gz = M [x][y] +M [y][a] +M [a][z] ≤M [x][y] = gy ≤ gx.

Thus, x has the Largest gain in P . Moreover, ga = M [x][y] +M [y][a] ≥ M [x][y] = gy ≥ gz, so z has
the minimum gain in P . It is easy to see that P is also traversable, hence, P is descending.

Case 2: D[x][z] = M [x][y]: That is, there is a ∈ V such that M [y][a] ∈ [0, |M [x][y]|] and
M [x][y] +M [y][a] +M [a][z] ≥ M [x][y]. In particular M [y][a] +M [a][z] ≥ 0. Let P = xyaz (observe

33

that P is traversable) and consider the charge drop schedule C that only drops charge at z and
C(z) = M [y][a] +M [a][z]. We prove that P is descending with respect to C. Observe that

gCx = 0, gCy = M [x][y] < 0 = gCx , gCa = M [x][y] +M [y][a] ≤ 0 = gCx ,

gCz = M [x][y] +M [y][a] + (M [a][z]− C(z)) = M [x][y] = gCy ≤ gCx .

Thus, x has the maximum gain in P with respect to C. Moreover, gCa = M [x][y]+M [y][a] ≥M [x][y] =
gz, so z has the minimum gain in P with respect to C. Hence, P is descending with respect to C.

Case 3: D[x][z] = min{M [x][y],M [a][z]}: That is a ∈ V satisfies M [x][y] ≥ |M [x][y]|, see
Figure 14(c). Let P = xyaz (observe that P is traversable) and let C be the schedule that assigns
C(a) = M [x][y] +M [y][a] and C(z) = max{0,M [a][z]−M [x][y]}. Observe that

gCx = 0, gCy = M [x][y] < 0 = gCx , gCa = M [x][y] + (M [y][a]− C(a)) = 0 = gCx ,

gCz = M [x][y] + (M [y][a]− C(a)) + (M [a][z]− C(z)) = min{M [a][z],M [x][y]} ≤ gCx .

Thus, x has the maximum gain in P with respect to C. Moreover,

gCa = 0 ≥ min{M [a][z],M [x][y]} = gCz ,

gCy = M [x][y] ≥ min{M [a][z],M [x][y]} = gCz ,

so z has the minimum gain in P with respect to C. Hence, P is descending with respect to C.

We now assume that M [x][y] ≥ 0, and the algorithm assigned D[x][z] = M [x][y] +M [y][a] +M [a][z]
where M [y][a] + M [a][z] ≥ 0 for some a ∈ V satisfying M [y][a] ∈ [−M [x][y], 0]. Consider the path
P = xyaz. Observe that P is traversable. Similar to before, we get that P is ascending. By Lemma C.2
we conclude that P is strongly traversable.

E.3 Building Long Shortcuts

The procedure Long-Shortcuts(M) aims to find long shortcuts in GM and update M accordingly.
Long Shortcuts are shortcuts that correspond to monotone paths of length k > 3. We find such
shortcuts by computing arc-bounded paths and then extending them by one arc into monotone paths
(i.e shortcuts). We give the full description of Long-Shortcuts(M) in Appendix E.3.6. This algorithm
uses several sub-algorithm which we list below and elaborate on in the next sections.

• Breadth-Search(M,D) : This procedure aims to discover arc-bounded paths that are longer than
the ones stored in D. This is done by extending existing arc-bounded paths in D by one arc.
This procedure performs updates of the form D[xy][z] = max{D[xy][z], D[xy][a]+M [a][z]}. See
Figure E.3.1.

• Concatenate(M,D,U,W,X): Given sets U,W,X ⊆ V , the procedure aims to discover longer
arc-bounded paths than the ones stored in D by concatenating first-arc-bounded paths with
first-arc-bounded paths and last-arc-bounded paths with last-arc-bounded paths. This procedure
performs updates of the form D[uv][x] = max{D[uv][x], D[uv][w] +D[wa][x]}, where u ∈ U,w ∈
W,x ∈ X. See Figure 17.

• Compute-Funnels(M) : This procedure returns a data structure D that dominates any simple
path that is a funnel in GM w.h.p. (see Lemma E.10). See Figure 18.

34

• Concatenate-Opposite(M,D,U,W,X): Given sets U,W,X ⊆ V , this procedure aims to dis-
cover longer arc-bounded paths than the ones stored in D by concatenating first-arc-bounded
paths with last-arc-bounded paths. This procedure performs updates of the form D[uv][x] =
max{D[uv][x], D[uv][w] +D[w][ax]}, where u ∈ U,w ∈W,x ∈ X. See Figure 19.

• Arc-Bounded-To-Monotone(M,D, T): Given a set T ⊆ V , this procedure considers every arc-
bounded path in which the “bounding” arc contains a vertex of T . The goal of this procedure
is to extend such a path by a single arc and get a monotone path. This is the procedure that
computes the shortcuts for Long-Shortcuts(M,D).

The following is the relation between the different algorithms. Algorithm Compute-Funnels(M) Is
achieved by applying Breadth-Search and Concatenate several times on a sampled set. Algorithms
Long-Shortcuts(M) (see Figure 21) starts by applying Compute-Funnels(M), which returns a data
structure D that, dominates every simple path that is a funnel in GM w.h.p.. The algorithm then tries
to elongate some sampled arc-bounded paths. This is done by consecutive applications of Concatenate
and Concatenate-Opposite. Finally, Long-Shortcuts(M) calls Arc-Bounded-To-Monotone in order to
transform the arc bounded path stored in D into monotone paths.

E.3.1 Breadth-Search

This procedure extend the length of arc-bounded paths dominated by D, by concatenating to them a
single arc of larger gain. I.e., given P = v1 . . . vk, a v1v2-bounded path, Breadth-Search(M,D) scans all
arcs xv1 and checks if xv1 . . . vk is xv1-bounded path and if so, updatesD[xv1][vk]. The implementation
is as follows and its pseudocode is given in Figure E.3.1.

For every triplet x, y, z ∈ V , we update D[xy][z] as follows. If M [x][y] ≥ 0, we consider the values
D[ya][z], for all a ∈ V such that −M [x][y] ≤ M [y][a] ≤ 0, and we concatenate xy to the path
corresponding to D[ya][z], which results in a xy-bounded path to z. That is, for every y, z ∈ V , we
find a ∈ V , that maximizes M [x][y] +D[ya][z] while satisfying −M [x][y] ≤ M [y][a] ≤ 0. To compute
such a ∈ V , we store in a range tree FTyz the pairs (k1, k2) = (M [y][a], D[ya][z]) for every a ∈ V .
To update D[xy][z], we search in FTyz for the pair (k1, k2) = (M [y][a], D[ya][z]) with largest k2 that
satisfies k1 ∈ [−M [x][y], 0]. We then assign D[xy][z] = max{D[xy][z],M [x][y] +D[ya][z]}.
The case M [x][y] ≤ 0 and the cases that P is last-arc-bounded are symmetric, See Figure E.3.1.

Lemma E.4. Let P = v1 . . . vk be an arc-bounded path in GM . If D dominates P , then the following
holds after Breadth-Search(D,M)

• If P is v1v2-bounded and P ′ = v0v1v2 . . . vk is v0v1-bounded, then D dominates P ′.

• If P is vk−1vk-bounded and P ′ = v1 . . . vkvk+1 is vkvk+1-bounded, then D dominates P ′.

Proof. Assume the first case, i.e., P is v1v2-bounded. Assume that M [v1][v2] ≤ 0, the case M [v1][v2] ≥
0 is symmetric. Let (M [v1][a], D[v1a][vk]) be the pair in FTv1vk with largest D[v1a][vk] that satisfies
M [v1][a] ∈ [−M [v0][v1], 0]. Since P ′ is v0v1-bounded, we have |M [v1][v2]| ≤ M [v0][v1] and therefore
D[v1a][vk] ≥ D[v1v2][vk]. Thus, after Breadth-Search(M,D),

D[v0v1][vk] ≥M [v0][v1] +D[v1a][vk] ≥M [v0][v1] +D[v1v2][vk] ≥M [v0][v1] + g(P) = g(P ′).

The proof of the second case where P is vk−1vk-bounded is symmetric.

Since every funnel is arc-bounded, the following is a direct corollary of Lemma E.4.

35

Breadth-Search(D,M):

for a, b ∈ V do
FTab ← RT (M [a][·], D[a·][b]) // Range tree of

¯
aw̄b and ā

¯
wb paths

LTab ← RT (M [·][b], D[a][·b]) // Range tree of a
¯
wb̄ and aw̄

¯
b paths

for x, y, z ∈ V do
if M [x][y] ≥ 0 :

(−, D[ya][z])← FTyz.range(k1 ∈ [−M [x][y], 0]).max k2()
D[xy][z]← max{D[xy][z],M [x][y] +D[ya][z]} // We do this if D[ya][z] ̸= −∞

else:
(−, D[ya][z])← FTyz.range(k1 ∈ [0, |M [x][y]|]).max k2()
D[xy][z]← max{D[xy][z],M [x][y] +D[ya][z]} // We do this if D[ya][z] ̸= −∞

if M [y][x] ≥ 0 :
(−, D[z][ay])← LTzy.range(k1 ∈ [−M [y][x], 0]).max k2()
D[z][yx]← max{D[z][yx], D[z][ay] +M [y][x]} // We do this if D[z][ay] ̸= −∞

else:
(−, D[z][ay])← LTzy.range(k1 ∈ [0, |M [y][x]|]).max k2()
D[z][yx]← max{D[z][yx], D[z][ay] +M [y][x]} // We do this if D[z][ay] ̸= −∞

𝑎

𝑎

𝑎

𝑥

𝑥

𝑥

𝑥

𝑎

𝑦

𝑦

𝑦

𝑦

𝑧

𝑧

𝑧

𝑧

|𝑀 𝑥 𝑦 |

𝑀 𝑦 𝑥

𝑀 𝑥 𝑦

|𝑀 𝑦 𝑥 |

Figure 16: The four cases of Breadth-Search(M,D). On the top we concatenate the arc xy with a
first-arc bounded path from y to z. On the bottom we concatenate a last-arc bounded path from z to
y with the arc yx.

Corollary E.5. Assume that every funnel P in GM of length at most k is dominated by D. Then
after calling Breadth-Search(D,M), it holds that every funnel P in GM of length at most k + 1 is
dominated by D.

Lemma E.6. Procedure Breadth-Search(M,D) maintains Invariants 1(A) and 1(B)

Proof. Assume the invariant holds before Breadth-Search(M,D). We proceed by induction on the
changes of D. Let x, y, z ∈ V . We split into cases.

Assume M [x][y] ≥ 0 and assume the procedure assigned D[xy][z] = M [x][y] +D[ya][z], where a ∈ V
satisfies 0 > M [y][a] ≥ −M [x][y]. By Invariant 1(A), there is a traversable path P = yav1 . . . vkz in
GM and a charge drop schedule C such that P is ya-bounded with respect to C and gC(P) = D[ya][z].
SinceM [x][y] ≥ 0, it follows that P ′ = xyav1 . . . vkz is traversable. Moreover, sinceM [x][y] ≥ |M [y][a]|

36

and P is ya-bounded with respect to C, we get that P ′ is xy-bounded with respect to the schedule C ′

that does not drop charge at x and then goes according to C. We get gC
′
(P ′) = M [x][y] + gC(P) =

M [x][y] +D[ya][z] = D[xy][z].

Assume M [y][z] ≤ 0 and assume the procedure assigned D[x][yz] = D[x][ay] +M [y][z], where a ∈ V
satisfies 0 ≤ M [a][y] ≤ −M [y][z]. By Invariant 1(B), there is a path P = xv1 . . . vkay in GM and a
charge drop schedule C such that P is ay-bounded with respect to C and satisfies gC(P) = D[x][ay].
Since M [a][y] ≤ −M [y][z], we get that P ′ = xv1 . . . vkayz is yz-bounded with respect to the charge
drop schedule C ′ that performs charge drops according to C and does not drop charge at the new
vertex z. By Invariant 1(C), the arc yz is traversable, thus M [y][z] ≥ −B which means by Lemma C.3
that P ′ is traversable. Finally, note that gC

′
(P ′) = gC(P) +M [y][z] = D[x][ay] +M [y][z] = D[x][yz].

The other case M [x][y] ≤ 0 is symmetric to the case M [x][y] ≥ 0 and the case M [y][z] ≤ 0 is symmetric
to the case M [y][z] ≥ 0.

E.3.2 Concatenate first-arc bounded paths with first-arc bounded paths

In this procedure (see Figure 17) we are given 3 sets U,W,X ⊆ V . For every u ∈ U,w ∈W,x ∈ X and
v ∈ V , we try to concatenate a uvw path with some wax path, where a ∈ V . This gives a (hopefully
new or improved gain) ū

¯
vx path. We also do the symmetric version: we try to concatenate a xā

¯
w

path to a wv̄
¯
u path.

The choice of focusing on paths bounded by a arcs of negative gain was intentional. To emphasize the
difficulty in concatenating paths bounded by arcs of positive gain, consider the following example.

Let P be a uvw path, where M [u][v] = 10 and g(P) = 5. Let Q be a wax path, where M [w][a] = 5
and g(Q) = 3. Clearly P | Q is uv-bounded with gain g(P | Q) = 8. However it may be the case
where D dominates both P and Q and stores the values D[uv][w] = 9 and D[wa][x] = 4. But the
concatenation of the paths, say P ′ and Q′, realizing these values is not uv-bounded since the gain
of P ′ | Q′ is D[uv][w] + D[wa][x] = 13 which is larger than M [u][v]. For arcs of negative gain if we
replace P by a uvw path P ′ with a larger gain then P ′ | Q is always also uv-bounded. We could
have addressed this problem by dropping charge at w (see Definition B.1) but we preferred to get our
desired set of shortcuts without concatenating such paths at all.

In Appendix E.3.4 we show how to concatenate uvw paths with wax paths. This requires a range tree
and the ability to drop charges.

We distinguish the cases of concatenating first-arc-bounded paths and last-arc-bounded paths.

Concatenating uvw and wax: Consider the values D[uv][w] and D[wa][x], where a ∈ V satisfies
M [w][a] ≤ 0. It follows from Lemma E.7 and Lemma E.8 that the concatenation of the paths realizing
these values is a uv-bounded path if and only if |M [w][a]| ≤ D[uv][w]−M [u][v]. See Figure 17.

Therefore we update D[uv][x] as follows. We find an a ∈ V that maximises D[uv][w] +D[wa][x] while
satisfying |M [w][a]| ≤ D[uv][w] −M [u][v]. This is done by storing, for every pair w ∈ W,x ∈ X,
a Range tree of first-arc-bounded paths FTwx containing the pairs (k1, k2) = (M [w][a], D[wa][x]),
for every a ∈ V . We then find the pair (k1, k2) = (M [w][a], D[wa][x]) with largest k2 that satisfies
k1 ∈ [−(D[uv][w] −M [u][v]), 0]. We then perform the update D[uv][x] = max{D[uv][x], D[uv][w] +
D[wa][x]}.
Concatenating xaw and wvu: This case is handled symmetrically. We perform an update of the
form D[x][vu] = max{D[x][vu], D[x][aw] +D[w][uv]}, see Figure 17.

The following lemma proves that after running algorithm Concatenate(M,D), the concatenation of two
arc-bounded paths P,Q that match the description above and were dominated by D before executing
Concatenate(M,D), is dominated by D after this execution.

37

Concatenate(M,D,U,W,X):

for (w, x) ∈W ×X do
FTwx ← RT (M [w][·], D[w·][x]) // Range tree of w̄

¯
ax paths

LTxw ← RT (M [·][w], D[x][·w]) // Range tree of xā
¯
w paths

for (u, v, w, x) ∈ U × V ×W ×X do
if M [u][v] < 0 :

(−, D[wa][x])← FTwx.range(k1 ∈ [−(D[uv][w]−M [u][v]), 0]).max k2()
D[uv][x]← max{D[uv][x], D[uv][w] +D[wa][x]}

if M [v][u] < 0 :
(−, D[x][aw])← LTxw.range(k1 ∈ [−(D[w][vu]−M [v][u]), 0]).max k2()
D[x][vu]← max{D[x][vu], D[x][aw] +D[w][vu]}

𝑢

𝑣

|𝑀 𝑢 𝑣 |

𝑤

𝑥

𝑎

𝐷 𝑤𝑎 𝑥 −𝑀[𝑤][𝑎]

|𝐷 𝑤𝑎 𝑥 |

|𝐷 𝑢𝑣 𝑤 |

𝐷 𝑢𝑣 𝑤 −𝑀[𝑢][𝑣]

𝑢

𝑣

𝑤

𝑥

𝑎

𝐷 𝑥 𝑎𝑤 −𝑀[𝑎][𝑤]

|𝐷 𝑥 𝑎𝑤 |

|𝐷 𝑤 𝑣𝑢 |

𝐷 𝑤 𝑣𝑢 −𝑀[𝑣][𝑢]

Figure 17: On the left: a concatenation of two ABC paths.

Lemma E.7. Let U,W,X ⊆ V and let u ∈ U,w ∈ W,x ∈ X and v ∈ V . Let P1 and P2 be paths in
GM that are dominated by D. Assume one of the following holds

• P1 is a uvw path, P2 is a wax path, and P = P1 | P2 is a uvx path.

• P1 is a xaw path, P2 is a wvu path, and P = P1 | P2 is a xvu path.

Then, after Concatenate(M,D,U,W,X), D dominates P .

Proof. Assume the first case: Since D dominates P1 and P2 we have D[uv][w] +D[wa][x] ≥ g(P1) +
g(P2) = g(P). Since P is uv-bounded, it follows that g(P1) + M [w][a] = gPa ≥ gPv = M [u][v]. So
by rearranging we get −M [w][a] = |M [w][a]| ≤ g(P1) −M [u][v]. Since D dominates P1 it follows
M [w][a] ∈ [−(D[uv][w] −M [u][v]), 0]. Let (k1, k2) = (M [w][a′], D[wa′][x]) be the pair in FTwx with
largest k2 that satisfies k1 ∈ [−(D[uv][w]−M [u][v]), 0]. Therefore D[wa′][x] = k2 ≥ D[wa][x], so, after
the algorithm assignsD[uv][x] a value, we getD[uv][x] ≥ D[uv][w]+D[wa′][x] ≥ D[uv][w]+D[wa][x] ≥
g(P).

The second case in which P1 is a xaw path and P2 is a wvu path is symmetric.

Lemma E.8. Procedure Concatenate(M,D,U,W,X) maintains Invariants 1(A) and 1(B).

Proof. Let u ∈ U,w ∈W,x ∈ X and v ∈ V .

Assume M [u][v] < 0 and the algorithm sets D[uv][x] = D[uv][w] +D[wa][x], where a ∈ V satisfies

−M [w][a] = |M [w][a]| ≤ D[uv][w]−M [u][v]. (5)

38

By Invariant 1(A), there is a uvw path P1 with respect to a charge drop schedule C1 that satisfies
gC1(P1) = D[uv][w]. Similarly there is a wax path P2 with respect to a charge drop schedule C2 that
satisfies gC2(P2) = D[wa][x]. Let P = P1 | P2 and let C be the concatenation C1 and C2. Clearly
gC(P) = gC1(P1)+gC2(P2) = D[uv][x]. We prove P is uv-bounded with respect to C and therefore, by
Lemma C.3, P is traversable. Since P1 is uv-bounded with respect to C1 and P2 is wa-bounded with
respect to C2, it is enough to prove that the gain at a (with respect to P and C) is bounded between
the gains of u and v. Since M [w][a] < 0 it follows that gP,Ca ≤ gP,Cw ≤ gP,Cu = 0. Let da be the charge
drop at a induced by C2. Since P2 is wa-bounded with respect to C2, it follows by Definition B.7 that
da = 0. We get

gP,Ca = gC1(P1) + (M [w][a]− da) = D[uv][w] +M [w][a]
(1)

≥M [u][v] = gPv ,

Where inequality (1) holds by Equation (5). Since P is uv-bounded, and by Invariant 1(C) M [u][v] ≥
−B, we conclude that P is traversable.

The case in which M [v][u] < 0 and the algorithm set D[x][vu] = D[x][aw]+D[w][vu] is symmetric.

E.3.3 Dominating Funnels

This procedure returns a data structure D such that every funnel, that is a simple path in GM ,
is dominated by D w.h.p.. This is done in 4 steps. Let s = Õ(nβ), where β = 2/3. The first
step is to compute bounded paths that dominate funnels of length n/s. This is done by running
Breadth-Search(D,M) n/s times. Correctness of this step follows from Corollary E.5.

In the second step, we sample a set S of Θ(s log n) vertices. For every triplet s1, s2, s3 ∈ S we try to
concatenate a s1a1s2 path with a s2a2s3 path, where a1, a2 ∈ V . We also concatenate the symmetric

paths: a s3a1s2 path with a s2a2s3 path. This is done by applying Concatenate(D,S, S, S) log n times,
see Appendix E.3.2. Each of these log n iterations multiplies the length of the funnels between vertices
of S that D dominates. We show that after the second step, D dominates all funnels that are simple
paths. that start and end at vertices from S. Lemma E.9 proves the correctness of this step.

In the third step we call Concatenate(D,S, S, V), which for every s1, s2 ∈ S and v ∈ V concatenates
s1a1s2 paths with s2a2v paths, where a1, a2 ∈ V . We also concatenate the symmetric paths: va1s2

paths with s2a2s1 paths. We show that after the third step, D dominates every simple funnel that is a

suv path or a vus path, where s ∈ S and u, v ∈ V . That is a funnel that starts with a sampled vertex
and ends at an arbitrary vertex or a funnel that ends with a sampled vertex and starts at an arbitrary
vertex. This happens since each such funnel that ends at a vertex v contains w.h.p. a sampled vertex
s, such that the funnel from s to v starts with a negative gain arc and is of length at most n/s.

Finally, in the fourth step we run Breadth-Search(D,M) again n/s times. This extends w.h.p. the
funnels that we cover to include all simple funnels of linear length (that start at any vertex). Lemma
E.10 proves the correctness of this entire procedure.

Lemma E.9. Let P = v1 . . . vk be a funnel which is negative arc-bounded and let S be the set sampled by
the procedure Compute-Funnels. Assume v1, vk ∈ S, then w.h.p. after applying Concatenate(M,D,S, S, S)
log n times in Compute-Funnels(M), D dominates P .

Proof. Assume that P is first-arc-bounded path. The case in which P is last-arc-bounded is symmetric.
If k ≤ n/s then the claim follows by Corollary E.5. Assume k > n/s. Divide P into continuous
segments each of length n/2s. Let It = {t · n/2s + 1, . . . (t + 1) · n/2s} be the set of indices of the
vertices of segment t for 0 ≤ t ≤ k/(n/2s) − 1.25 By the choice of S, for every t it holds w.h.p.

25We assume from brevity that k is a multiple of n/2s, otherwise the last segment is shorter, but it does not affect the
argument.

39

Compute-Funnels(M):

D ← Init−DS(M)

s← Θ(nβ)
for i = 1, . . . , n/s do // Finding funnels of length n/s

Breadth-Search(M,D)
S ← Sample(V, p = log n · s/n) // Each vertex is sampled i.i.d
for iteration = 1 . . . log n do

Concatenate(M,D,S, S, S) // Dominate funnels between sampled vertices

Concatenate(M,D,S, S, V) // Compute suffixes of funnels (from sampled vertices)
for i = 1, . . . , n/s do // Fully compute funnels

Breadth-Search(M,D)
return D

Figure 18: After this procedure every funnel P in GM is dominated by D w.h.p.

that there exists it ∈ It such that vit ∈ S and the arc vitvit+1 has negative gain. Thus, for every t,
it+1 − it ≤ n/s and therefore (by Corollary E.5) D dominates the sub-funnel vit . . . vit+1 . Therefore,
after the first call to Concatenate(M,D,S, S, S), by Lemma E.7, D dominates vit . . . vit+2 for every
t < 2s − 2. It follows by a simple induction that after the j’th call to Concatenate(M,D,S, S, S), D
dominates via . . . vib for every 1 ≤ a < b < 2s where b− a ≤ 2j .

Lemma E.10. Let P be a funnel of length |P | = O(n). After a call to Compute-Funnels(M), D
dominates P w.h.p.

Proof. Denote P = v1 . . . vk and assume P is v1v2-bounded, the case of a last-arc bounded funnel is
symmetric. For every 1 ≤ i ≤ j ≤ k we denote P ij = vi . . . vj .

If k ≤ n/s then the claim follows by Corollary E.5. Assume k > n/s. Let A = {1, . . . n/2s}, B =
{k − n/2s, . . . k − 1} be sets of the first 2n/s indices and last 2n/s indices. By the sampling prob-
ability of the nodes to S we get that w.h.p. there exists a ∈ A and b ∈ B such that va, vb ∈ S
and M [va][va+1] < 0 and M [vb][vb+1] < 0.26 By Lemma E.9, w.h.p., after the log n applications of
Concatenate(M,D,S, S, S), D dominates P ab. Since k− b ≤ n/s, by Corollary E.5, after the first n/s
call to Breadth-Search(D,M), D dominates P bk. By applying Lemma E.7 on P1 = P ab and P2 = P bk,
we conclude that after performing Concatenate(M,D,S, S, V) it holds that D dominates P ak. Fi-
nally, since a < n/s, we get by Lemma E.4 that after the last n/s calls to Breadth-Search(D,M), D
dominates P .

E.3.4 Concatenating first-arc-bounded paths with last-arc-bounded paths

Similarly to Concatenate(M,D), in Concatenate-Opposite(M,D) we are given 3 sets U,W,X ⊆ V . For
every u ∈ U,w ∈W,x ∈ X and v ∈ V , we try to create a uvx path by concatenating a uvw path with
a wax path, where we optimize over the choices of a ∈ V , see Figure 19. We also do the symmetric
computation: we try to create a xvu path by concatenating a xaw path with a wvu path. Notice that
in either case the new path that we create is negative arc-bounded.

We now elaborate on the case corresponding to concatenating uvw path with a wax path. Assume
M [u][v] < 0, we update D[uv][w] as follows. We consider the values D[w][ax], for every a ∈ V that
satisfies M [a][x] > 0 and M [a][x] −D[w][ax] ≤ D[uv][w] −M [u][v]. The latter condition guarantees
that the gain of a is larger than the gain of v with respect to the concatenation of the paths realizing
D[uv][w] and D[w][ax], see Figure 19. We distinguish between the following two cases.

26We may assume that M [va][va+1] < 0 and M [vb][vb+1] < 0 since half the arcs in a funnel are of negative gain
(Lemma B.9).

40

Case 1: M [a][x] − D[w][ax] ≤ D[uv][w] − M [u][v] and D[w][ax] ≤ |D[uv][w]|: This case
corresponds to Figure 19(a). The first condition says that the gain of the concatenated path never
goes below the gain of v (i.e gv = M [u][v] < 0) and the second condition says that the gain of the
concatenated path never exceeds the gain of u (i.e., gu = 0). In this case we claim that the paths
realizing D[uv][w] and D[w][ax] can be concatenated into a uvx path of gain D[uv][w]+D[w][ax]. We
find such an a ∈ V with largest D[w][ax] and perform the update D[uv][x] = max{D[uv][x], D[uv][w]+
D[w][ax]}. To find the best a ∈ V , we store for every w ∈ W and x ∈ X the pairs (M [a][x] −
D[w][ax], D[w][ax]), for a ∈ V satisfying M [x][a] > 0, in a Range Tree LRTwx of last-arc-bounded
paths. We then perform a search in LRTwx for a pair (k1, k2) with k1 ≤ D[uv][w] − M [u][v] and
largest k2 that satisfies k2 ≤ |D[uv][w]|. This operation takes O(log2 n) time.

Case 2: D[w][ax] ≥ |D[uv][w]| and M [a][x] ≤ |M [u][v]|. This case corresponds to Figure 19(b).
The first condition implies that the gain at x is larger than the gain at u. Note that the condition
from Case 1 M [a][x]−D[w][ax] ≤ D[uv][w]−M [u][v] can be derived from the two conditions. In this
case we set D[uv][x] = 0. To justify this assignment we argue that there is a path P and an associated
charge drop schedule C such that P is a uvx path with respect to C and gC(P) = 0. Let (P1, C1)
and (P2, C2) be the paths and charge drop schedules realizing D[uv][w] and D[w][ax], respectively.
Let P = P1 | P2. We define a charge drop schedule C for P as follows: Let dw be the last charge
drop in C1 associated with w. We get C by concatenating C1 and C2 and changing dw to be equal to
dw + gC1(P1) + gC2(P2).

We claim that P is uv-bounded with respect to C and gC(P) = 0. The latter is clear since

gC(P) = gC1(P1)− (gC1(P1) + gC2(P2)) + gC2(P2) = 0.

Lemma E.12 shows that P is uv-bounded with respect to C.

We discover whether there exists a vertex a ∈ V for which we should apply this case as follows. For
every w ∈ W and x ∈ X, we store the pairs (D[w][ax],M [a][x]), for a ∈ V satisfying M [x][a] > 0,
in a 2-dimensional Range Tree LRT ′

wx of values realized by wax paths. We then perform a search in

LRT ′
wx for a pair (k1, k2) with k1 ≥ |D[uv][w]| and k2 ≤ |M [u][v]|. This operation is done in O(log2 n)

time. If we find such a pair, we apply this case and set D[uv][x] = 0.

The symmetric version, i.e., concatenating a xaw path with a wvu path, is as done analogously, see
Figure 19. We search for a ∈ V , such that M [x][a] > 0 and one of the following cases is satisfied:

Case 3: M [x][a] − D[xa][w] ≤ D[w][vu] − M [v][u] and D[xa][w] ≤ |D[w][vu]|: This
case corresponds to Figure 19(c). Similarly to Case 1, in this case we can concatenate the paths
realizing D[xa][w] and D[w][vu]. we find a that maximize D[xa][w] and perform the update D[x][vu] =
max{D[x][vu], D[xa][w] +D[w][vu]}.
Case 4: D[xa][w] ≥ |D[w][vu]| and M [x][a] ≤ |M [v][u]|. This case corresponds to Figure 19(d).
Similarly to Case 4, in this case in order to concatenate the paths realizing D[xa][w] and D[w][vu] we
have to perform a charge drop at w. This will give us a xvu path of gain 0 (with respect to some
charge drop schedule), this is the best we can hope for in a negative arc-bounded path. We search if
such an a ∈ V exists using a Range tree FRT ′

xw. If so, we perform the update D[x][vu] = 0.

Lemma E.11. Let P and Q = be paths in GM that are dominated by D. Let U,W,X ⊆ V and let
u ∈ U,w ∈W,x ∈ and v ∈ V . If one of the following holds

• P is a uvw path, Q is a wax path, and P | Q is a uvx path.

• P is a xaw path, Q is a wvu path, and P | Q is a xvu path.

then after Concatenate-Opposite(M,D,U,W,X), D dominates P | Q.

41

Concatenate-Opposite(M,D,U,W,X):

for (w, x) ∈W ×X do
LRTwx ← RT () // 2D-Range tree of w

¯
ax̄ paths

for a ∈ V s.t M [a][x] ≥ 0 do
LRTwx.insert(M [a][x]−D[w][ax], D[w][ax])

LRT ′
wx ← RT () // 2D-Range Tree of w

¯
ax̄ paths

for a ∈ V s.t M [a][x] ≥ 0 do
LRT ′

wx.insert(D[w][ax],M [a][x])

FRTxw ← RT () // 2D-Range tree of
¯
xāw paths

for a ∈ V s.t M [x][a] ≥ 0 do
FRTxw.insert(M [x][a]−D[xa][w], D[xa][w])

FRT ′
xw ← RT () // 2D-Range tree of

¯
xāw paths

for a ∈ V s.t M [x][a] ≥ 0 do
FRT ′

xw.insert(D[xa][w],M [x][a])

for (u, v, w, x) ∈ U × V ×W ×X do
if M [u][v] < 0 : // Trying to create a ū

¯
vx path

(−, D[w][ax])← LRTwx.range(k1 ≤ D[uv][w]−M [u][v], k2 ≤ |D[uv][w]|).max k2()
D[uv][x]← max{D[uv][x], D[uv][w] +D[w][ax]}
bool← LRT ′

wx.find(k1 ≥ |D[uv][w]|, k2 ≤ |M [u][v]|)
if bool :

D[uv][x]← 0

if M [v][u] < 0 : // Trying to create a xv̄
¯
u path

(−, D[xa][w])← FRTxw.range(k1 ≤ D[w][vu]−M [v][u], k2 ≤ |D[w][vu]|).max k2()
D[x][vu]← max{D[x][vu], D[xa][w] +D[w][vu]}
bool← FRT ′

xw.find(k1 ≥ |D[w][vu]|, k2 ≤ |M [v][u]|)
if bool :

D[x][vu]← 0

𝑢

𝑣

|𝑀 𝑢 𝑣 |

𝑤

𝑎

𝑥

M 𝑎 𝑥
− 𝐷 𝑤 𝑎𝑥

𝐷 𝑤 𝑎𝑥|𝐷 𝑢𝑣 𝑤 |

𝐷 𝑢𝑣 𝑤 −𝑀[𝑢][𝑣]

𝑢

𝑣

|𝑀 𝑢 𝑣 |

𝑤

𝑎

𝑥

M 𝑎 𝑥
− 𝐷 𝑤 𝑎𝑥

𝐷 𝑤 𝑎𝑥

|𝐷 𝑢𝑣 𝑤 |

𝐷 𝑢𝑣 𝑤 −𝑀[𝑢][𝑣]

𝑢

𝑣

𝑤

𝑎

𝑥

𝐷 𝑤 𝑣𝑢
−𝑀[𝑣][𝑢]

|𝐷 𝑤 𝑣𝑢 |𝐷 𝑥𝑎 𝑤

M 𝑥 𝑎 − 𝐷 𝑥𝑎 𝑤

𝑢

𝑣

𝑤

𝑎

𝑥

𝐷 𝑤 𝑣𝑢
−𝑀[𝑣][𝑢]

|𝐷 𝑤 𝑣𝑢 |

𝐷 𝑥𝑎 𝑤

M 𝑥 𝑎 − 𝐷 𝑥𝑎 𝑤

(𝑎) (𝑏)

(𝑐) (𝑑)

Figure 19: Concatenating arc-bounded paths, one is first-arc-bounded and the other is last-arc-
bounded.

42

Proof. Assume the first case, the second case is symmetric. Since P | Q is a uvw path, we get that
ga ≥ gv = M [u][v] (gains are with respect to P | Q). Thus

D[uv][w] +D[w][ax] ≥ g(P) + g(Q) = gx = ga +M [a][x] ≥ gv +M [a][x] = M [u][v] +M [a][x].

Rearranging the terms, we get M [a][x] −D[w][ax] ≤ D[uv][w] −M [u][v]. We split to cases analogue
to the cases in the description of the algorithm.

Case 1: D[w][ax] ≤ |D[uv][w]|. Let (k1, k2) = (M [a′][x] − D[w][a′x], D[w][a′x]) be the pair in
LRTwx with k1 ≤ D[uv][w] −M [u][v] and largest k2 that satisfies k2 ≤ |D[uv][w]|. Since (M [a][x] −
D[w][ax], D[w][ax]) is also a pair in LRTwx, we get D[w][a′x] = k2 ≥ D[w][ax]. Consider the tuple
(u, v, w, x). Thus, when D[uv][x] is updated according to this tuple, the first If statement performs
the following update

D[uv][x] ≥ D[uv][w] +D[w][a′x] ≥ D[uv][w] +D[w][ax] ≥ g(P) + g(Q) = g(P | Q).

Case 2: D[w][ax] ≥ |D[uv][w]| and M [a][x] ≤ |M [u][v]. In this case the algorithm assigns
D[uv][x] = 0. Since P | Q is a uvx path, it follows that g(P | Q) ≤ 0 and therefore D[uv][x] ≥ g(P |
Q).

Lemma E.12. Procedure Concatenate-Opposite(M,D,U,W,X) maintains Invariants 1(A) and 1(B).

Proof. We prove the lemma by induction on the assignments of the algorithm. Let u ∈ U,w ∈W,x ∈ X
and v ∈ V and assume M [u][v] < 0, the case M [v][u] < 0 is symmetric.

Assume the algorithm set D[uv][x] = D[uv][w] +D[w][ax] for some a ∈ V satisfying

M [a][x]−D[w][ax] ≤ D[uv][w]−M [u][v], and (6)

D[w][ax] ≤ |D[uv][w]|. (7)

In particular D[uv][x] ≤ 0. By Invariant 1(A), there is traversable a uvw path P1 with respect to a
charge drop schedule C1 that satisfies g(P1) = D[uv][w]. Similarly there is a wax path P2 with respect
to a charge drop schedule C2 that satisfies g(P2) = D[w][ax]. Consider the path P = P1 | P2. Let C
be the charge drop schedule derived by following C1 on P1 and then C2 on P2. We get

gC(P) = gC1(P1) + gC2(P2) = D[uv][w] +D[w][ax] = D[uv][x].

We now prove that P is uv-bounded with respect to C. Since P1 is uv-bounded with respect to C1

and P2 is ax-bounded with respect to C2, it is enough to prove that gP,Ca ≥ gP,Cv and gP,Cx ≤ gP,Cu .
Indeed, gP,Cx = gC(P) = D[uv][x] ≤ 0 = gP,Cu . Let dx ≥ 0 be the charge drop performed at x in C.
We get

gP,Ca = gC(P)− (M [a][x]− dx) ≥ gC1(P1) + gC2(P2)−M [a][x]

= D[uv][w] +D[w][ax]−M [a][x]
(1)

≥M [u][v]
(2)

≥ gP,Cv ,

where inequality (1) holds by the left inequality in Equation (6). Note inequality (2) is not necessarily
an equality since there might be a charge drop at v. Since P1 is traversable it holds that M [u][v] ≥ −B
and therefore, By Lemma C.3, P is traversable.

Assume the algorithm set D[uv][x] = 0 because there is a vertex a ∈ V such that

M [a][x] ≤ |M [u][v]| (8)

D[w][ax] ≥ |D[uv][w]| (9)

43

M [a][x] ≤ |M [u][v]| and D[w][ax] ≥ |D[uv][w]| and M [a][x] − D[w][ax] ≤ D[uv][w] − M [u][v]. In
particular D[uv][w] +D[w][ax] ≥ 0. Define P = P1 | P2 and C as before. Let γ = gC(P), therefore
γ = gC1(P1) + gC2(P2) = D[uv][w] +D[w][ax] ≥ 0. Let dw be the last charge drop in C1 associated
with w. We define a charge drop schedule C ′ that differs from C only at w and assigns a charge drop
at w of dw + γ. We prove that P is a uvx path with respect to C ′ and gC

′
(P) = D[uv][w]. The latter

follows by the following calculation

gC
′
(P) = gC1(P1) + (gC2(P2)− γ) = D[uv][w] +D[w][ax]− γ = 0 = D[uv][w].

We now prove that P is uv-bounded with respect to C ′ and therefore, By Lemma C.3, P is traversable.
Since P2 is a wax path with respect to C2 (and also with respect to the new charge drop at its first

vertex w), it is enough to show that gP,C
′

a ≥ gP,C
′

v and gP,C
′

x ≤ gP,C
′

u . Indeed, gP,C
′

x = gC
′
(P) = 0 =

gP,C
′

u . Let dx ≥ 0 be the charge drop performed at x in C ′. We get

gP,C
′

a = gC
′
(P)− (M [a][x]− dx) = −M [a][x] + dx

≥M [u][v] + dx ≥M [u][v] ≥ gP,C
′

v .

E.3.5 Build monotone paths from arc-bounded paths

In this procedure (see Figure 20) we are given a set T ⊆ V . For every u ∈ T and v, w, x ∈ V , we try
to concatenate a uvx path with the arc xy in order to either get a descending path from u to y or to
get an ascending path from v to y. We also do the opposite: we try to concatenate the arc yx with
a xvu path in GM in order to either get a descending path from y to u or to get an ascending path
from y to v.

The concatenation of uvx paths with the arc xy is done as follows. We distinguish between the
following cases.

Case 1: −B ≤ D[uv][x] + M [x][y] ≤ M [u][v]. This case corresponds to a concatenation of
a uvx path with the arc xy that results in a descending path from u to u. The algorithm sets
D[u][y] = max{D[u][y], D[uv][x] +M [x][y]}.
Case 2: D[uv][x] + M [x][y] ≥ M [u][v] This case means that after the concatenation, the gain
at y is at least the gain at v. In order to make the path descending, we perform a charge drop at y
such that the gain at y matches the gain of v, resulting in a descending path. The algorithm sets
D[u][y] = max{D[u][y],M [u][v]}.
Case 3: D[uv][x] + M [x][y] ≥ 0 This case means that after the concatenation, the gain at y is at
least the gain at u (which is 0). This means that y has the maximum gain in the concatenated path.
Since P is uv-bounded, v has the minimum gain in the concatenated path. Therefore the sub path
from v to y is ascending. The algorithm sets D[u][y] = max{D[u][y],−M [uv] +D[uv][x] +M [x][y]}.
The procedure performs similar computations when it concatenates the arc yx with a xvu paths.

The following lemma states that if D dominates a first-arc uv-bounded path P , where u ∈ T , that
can be extended by an arc xy and result in a monotone path P ′ (that starts either at u or v), then
after Arc-Bounded-To-Monotone(M,D, T), D dominates P ′. The lemma also proves a similar result
for last-arc bounded paths.

Lemma E.13. Let P be an arc-bounded path in GM and assume that D dominates P . Denote by P̃
the subpaths of P that excludes the bounding arc of P (either the first arc or the last arc). Then the
following holds after Arc-Bounded-To-Monotone(M,D, T)

44

Arc-Bounded-To-Monotone(M,D, T):

for (u, v, x, y) ∈ T × V 3 do

if M [u][v] ≤ 0 : // first-arc bounded paths

if −B ≤ D[uv][x] +M [x][y] ≤M [u][v] : // descending shortcuts
D[u][y] = max{D[u][y], D[uv][x] +M [x][y]}

if D[uv][x] +M [x][y] ≥M [u][v] : // descending shortcuts

D[u][y] = max{D[u][y],M [u][v]} // Drop charge at y to be descending.

if D[uv][x] +M [x][y] ≥ 0 : // ascending shortcuts
D[v][y] = max{D[v][y],−M [u][v] +D[uv][x] +M [x][y]}

// Note: Ascending path starts at v.

if M [v][u] ≤ 0 : // last-arc bounded paths

if −B ≤M [y][x] +D[x][vu] ≤M [v][u] : // descending shortcuts
D[y][u] = max{D[y][u],M [y][x] +D[x][vu]}

if M [y][x] +D[x][vu] ≥M [v][u] : // descending shortcuts

D[y][u] = max{D[y][u],M [v][u]} // Charge drop at x to make gCy = gCv .

if M [y][x] +D[x][vu] ≥ 0 : // ascending shortcuts
D[y][v] = max{D[y][v],M [y][x] +D[x][vu]−M [v][u]}

// Note: Ascending path ends at v.

|𝐷 𝑢𝑣 𝑥 |

𝑢

𝑣

𝑥|𝑀 𝑢 𝑣 |

𝑦

𝑢

𝑣

𝑥|𝑀 𝑢 𝑣 |

𝑦

𝑦′

𝑢

𝑣

𝑥|𝑀 𝑢 𝑣 |

𝑦

𝑢

𝑣

𝑥 |𝑀 𝑣 𝑢 |

𝑦

|𝐷 𝑥 𝑣𝑢 |

𝑢

𝑣

𝑥
|𝑀 𝑣 𝑢 |

𝑦

𝑥’

𝑢

𝑣

𝑥 |𝑀 𝑣 𝑢 |

𝑦

(𝑎) (𝑏) (𝑐)

(𝑑) (𝑒) (𝑓)

Figure 20: The six cases of the Algorithm Arc-Bounded-To-Monotone(M,D, T). Blue dotted arrows
are new shortcuts. Red downwards vertical arrows represent charge drop at a vertex, this affects the
gain of all subsequent vertices.

1. Assume P is a uvx bounded and P ′ = P | y is descending such that g(P ′) ≥ −B. If u ∈ T , then
D dominates P ′.

45

2. Assume P is uvx-bounded and P ′ = P̃ | y is ascending. If u ∈ T , then D dominates P ′.

3. Assume P is a uvx bounded. If u ∈ T , then D[u][x] ≥M [u][v].

4. Assume P is a xvu path and P ′ = y | P is descending such that g(P ′) ≥ −B. If u ∈ T , then D
dominates P ′.

5. Assume P is a xvu path and P ′ = y | P̃ is ascending. If u ∈ T , then D dominates P ′.

6. Assume P is a uvx bounded. If x ∈ T , then D[u][x] ≥M [v][x].

Proof. We prove items 1, 2 and 3 of the lemma, items 4, 5 and 6 are symmetric. Since D dominates
P , we get D[uv][x] ≥ g(P).

We begin by proving item 1 of the lemma. We split to cases according to the pseudocode.

If D[uv][x] + M [x][y] ≤ M [u][v] (See Figure 20(a)), then after Arc-Bounded-To-Monotone(M,D, T)
we get D[u][y] ≥ D[uv][x] +M [x][y]. Therefore

D[u][y] ≥ D[uv][x] +M [x][y] ≥ g(P) +M [x][y] = g(P ′).

If D[uv][x] + M [x][y] ≥ M [u][v] (See Figure 20(b)), then after Arc-Bounded-To-Monotone(M,D, T)
we get D[u][y] ≥M [u][v] ≥ g(P ′), since P ′ is descending. Thus, in both cases D dominates P ′.

We now prove item 2 of the lemma (See Figure 20(c)). By the assumptions, |M [u][v]| ≤ g(P ′) =
g(P̃) +M [x][y] = −M [u][v] + g(P) +M [x][y]. Rearranging the terms, we get g(P) +M [x][y] ≥ 0. So
D[uv][x] +M [x][y] ≥ 0. Hence, after Arc-Bounded-To-Monotone(M,D, T) we get

D[v][y] ≥ −M [u][v] +D[uv][x] +M [x][y] ≥ −M [u][v] + g(P) +M [x][y] = g(P ′).

We now prove item 3 of the lemma (See Figure 20(b) and set x = y). Since Compute-Shortcuts
initializes M [w][w] = 0 for every w ∈ V , and since the values in M are non decreasing, it follows that
M [x][x] ≥ 0. Therefore D[uv][x]+M [x][x] ≥ D[uv][x] ≥M [u][v], and by the second inner-if statement
in Arc-Bounded-To-Monotone(M,D, T) we get that D[u][x] ≥M [u][v].

The proof of items 4, 5 and 6 follows similarly, see Figures 20(d)-(f).

Lemma E.14. Procedure Arc-Bounded-To-Monotone(M,D, T) maintains Invariant 1(A).

Proof. We prove the lemma by induction on the assignments of the algorithm.

Let (u, v, x, y) ∈ T × V 3. Assume M [u][v] ≤ 0, the case M [v][u] ≤ 0 is symmetric. By Invariant 1(A),
there is a uvx path P with respect to a charge drop schedule C that satisfies gC(P) = D[uv][x]. We
split to three cases according to the assignment to D that the Arc-Bounded-To-Monotone(M,D, T)
performs.

Case 1: D[u][y] = D[uv][x] + M [x][y]. We perform this assignment only when

−B ≤ D[uv][x] +M [x][y] ≤M [u][v], (10)

see Figure 20(a). Let P ′ = P | y and let C ′ be the charge drop schedule that concatenates C with
the length one schedule that does no drop charge at the last vertex y. It holds that gC

′
(P ′) =

gC(P) +M [x][y] = D[uv][x] +M [x][y] = D[u][y]. Observe that

gP
′,C′

y = gC
′
(P ′) = D[uv][x] +M [x][y]

(10)

≤ M [u][v] = gP
′,C′

v .

46

Since P is traversable and gC
′
(P ′) = D[uv][x]+M [x][y]

(10)

≥ −B, it follows that P ′ is traversable. Since
P is also uv-bounded with respect to C, it follows that P ′ is descending with respect to C ′.

Case 2: D[u][y] = M [u][v]. We perform this assignment only when

D[uv][x] +M [x][y] ≥M [u][v], (11)

see Figure 20(b). Let P, P ′ and C be as in the previous case. In order to make P ′ descending we
define the charge drop schedule C ′ that follows C and then performs a charge drop at y of dy =
(gC(P) +M [x][y])−M [u][v] (i.e., we drop the gain at y to be equal to the gain at v). Note that dy is
indeed non negative since

dy = gC(P) +M [x][y]−M [u][v] = D[uv][x] +M [x][y]−M [u][v]
(11)

≥ 0.

We claim that gC
′
(P ′) = D[u][y](= M [u][v]) since

gC
′
(P ′) = gC(P) + (M [x][y]− dy) = D[uv][x] + (−D[uv][x] +M [u][v]) = M [u][v] = D[u][y].

Since P is traversable and gC
′
(P ′) = M [u][v] ≥ −B, it follows that P ′ is traversable. Since P is

uv-bounded with respect to C and gP
′,C′

y = gC
′
(P) = M [u][v] = gP

′,C′
v , it follows that P ′ is descending

with respect to C ′. Case 3: D[v][y] = −M [u][v] + D[uv][x] + M [x][y]. We perform this
assignment only when

D[uv][x] +M [x][y] ≥ 0, (12)

see Figure 20(c). Let Q be the suffix of P that skips the first vertex u. Let P ′ = Q | y. Since P is
traversable, it follows that Q is traversable and therefore (M [x][y] ≥ 0) P ′ is traversable. Let C ′ be
the charge drop schedule that follows C (but starts at v) and does not drop charge at y. Observe that

gC
′
(P ′) = −M [u][v] + gC(P) +M [x][y] = −M [u][v] +D[uv][x] +M [x][y] = D[v][y].

Moreover, since D[uv][x] +M [x][y]
(12)

≥ 0, it follows that gC(P) +M [x][y] ≥ 0. This means that y has
larger gain (with respect to C) than all vertices in P , so P ′ is ascending with respect to C ′. It follows
by Lemma C.2 that P is strongly traversable.

E.3.6 Long Shortcuts

This procedure aims to find “long shortcuts” in GM . These are shortcuts that correspond to monotone
paths of length k > 3. We find such shortcuts by computing (long) arc bounded paths and then
extending them by one arc into monotone paths (i.e shortcuts) using Arc-Bounded-To-Monotone.

The procedure (See Figure 21) starts by running Compute-Funnels(M) in order get a data structure D
that dominates each funnel in GM w.h.p. The procedure Long-Shortcuts(M) samples sets Ti of size

Θ(log
2(n)·κ
2i

), for every 1 ≤ i ≤ log n,27 where κ = Θ(n1−α). In Appendix F κ would be a bound
on the number of funnels which are maximal with respect to inclusion in a studied path P . For
every u ∈ Ti, we concatenate 2i times arc bounded paths starting at u (uw-bounded) with other
arc bounded paths. This is done using the two concatenation procedures Concatenate(M,D) and

27Recall the intuition from the Technical review (Section 2.2), the algorithm interpolates between two extreme cases,
see Figure 5

47

Long-Shortcuts(M):

D ← Compute-Funnels(M)
T ← ∅ // All vertices sampled for creating shortcuts

for i = 1 . . . log
(
n1−α log2 n

)
do

si ← Θ(log
2(n)

2i·nα) // new sampling probability

Ti ← Sample(V, p = si)
repeat 2i times

Concatenate-Opposite(M,D, Ti, V, V) // Skip funnels of opposite direction
Concatenate(M,D, Ti, V, V) // Skip funnels of the same direction

T ← T ∪ Ti

Arc-Bounded-To-Monotone(M,D, T)

return D.shortcuts

Figure 21: Procedure Long-Shortcuts. We sample vertices and compute arc bounded paths in which
those vertices are end points. The lower the sampling probability, the further we extend our search.

Concatenate-Opposite(M,D). Intuitively, each such concatenation extends the reach of a uv-bounded
path P (u ∈ Ti) by an additional funnel.

For example, if P is first-arc bounded, then the procedure Concatenate-Opposite(M,D) is used in
order to concatenate P with last-arc bounded funnel and Concatenate(M,D) is used in order to
concatenate P with first-arc bounded funnel.

Finally, after computing these arc bounded paths, we try to extend them by one arc to get new
shortcuts. We do so by running Arc-Bounded-To-Monotone(M,D, T), where T = ∪iTi is the set of all
sampled vertices.

F Stage I Correctness

In this appendix we prove the main theorem of our shortcutting algorithm.

Theorem F.1. Let P = v1 . . . vk be a monotone simple path in G. Let M be the shortcuts returned
from Compute-Shortcuts(G). Then w.h.p. M [v1][vk] ≥ g(P).

Theorem F.1 follows from the following lemma.

Lemma F.2. Let P = v1 . . . vk be a monotone simple path in GM with respect to a charge drop
schedule C. Let M ′ be the shortcuts table after running Update-Shortcuts(M). If |P | ≤ nα, then
M ′[v1][vk] ≥ gC(P). If |P | > nα, then w.h.p. there is a monotone path P ′, with respect to a charge
drop schedule C ′, from v1 to vk in GM ′

that satisfies gC
′
(P ′) ≥ gC(P) and |P ′| ≤ (1−1/Ω(log n)) · |P |.

Before proving Lemma F.2, we need to introduce the concept of funnel decomposition.

F.1 Funnel Decomposition

A funnel decomposition of a path P = e1 . . . ek in GM is a partition of P into subpaths F1, . . . , Ft which
are funnels that are maximal with respect to inclusion. More precisely, the funnel decomposition of
P is defined by the following process. We define F1 = e1 . . . er, where 1 ≤ r ≤ k, to be the maximal
funnel in P that contains e1. Assume we have constructed F1, F2, . . . , Fs and denote Fs = eℓ . . . er. If
∪si=1Fi ̸= P , then we define Fs+1 = eℓ′ . . . er′ as the maximal funnel in P with largest r′ that contains
er+1.

28 In particular ℓ′ > ℓ. Since every arc is a funnel, it is clear that the funnel decomposition is
well defined.

28Note that an arc can be contained in at most two maximal funnels. Therefore it is important to specify which
maximal funnel we pick.

48

The following lemma proves structural properties on the funnel decomposition. The lemma states that
every two different funnels that are maximal can intersect by at most two arcs. In particular, every
two consecutive funnels in the funnel decomposition overlap by at most two consecutive arcs.

Lemma F.3. Let P = e1 . . . ek be a path in G = (V,A, c). Let F1 = ea . . . eb and F2 = ec . . . ed be two
different funnels in P which are maximal with respect to inclusion. If a < c then c ≥ b− 1. Moreover,
if c = b− 1 then g(eb−1) = −g(eb)

Proof. If c > b then we are done. Otherwise F1 and F2 intersect and therefore we may assume that F1

is last-arc bounded and F2 is first-arc bounded (otherwise, by maximality they must be identical).29

By contradiction, assume c < b − 1. Therefore, eb−2, eb−1, eb ∈ F1 ∩ F2. It follows by the strict
inequalities in Lemma B.9 that g(eb−2) must be both strictly larger and strictly smaller than g(eb)
which is a contradiction.

Assume c = b − 1. Since F1 is last-arc-bounded, by the weak inequality in Lemma B.9, we get
|g(eb)| ≥ |g(eb−1)|. Similarly, since F2 is first-arc bounded, we get |g(eb−1)| ≥ |g(eb)| and therefore
g(eb) = −g(eb−1).

F.2 Proof of Lemma F.2

We present the road map of the proof of Lemma F.2. Let u, v ∈ V and let P be an ascending
path30 from u to v in GM . Let M1, . . . ,Mr be the shortcuts tables resulted after each of the r = nα

applications of Short-Shortcuts during the iterations of Compute-Shortcuts. During these iterations we
called Short-Shortcuts nα times and Long-Shortcuts Θ̃(1) times in expectation. Let Pi be the shortest
ascending path from u to v in GMi of gain larger than the gain of P in GM . Since the shortcuts tables
Mi keep increasing their gains it follows that |Pi| is decreasing with i = 1, . . . , r. Let us focus only on
the calls of Short-Shortcuts(Mi) for i = 1, . . . , r. If after running Short-Shortcuts nα times, the length
of Pnα is not smaller by a constant factor than the length of P , say Pnα ≥ 0.9|P |, it follows that in
half of the calls to Short-Shortcuts(Mi) we have |Pi| − |Pi+1| ≤ 0.2|P |/nα.

Lets focus on an iteration i such that |Pi| − |Pi+1| ≤ 0.2|P |/nα. This means that in Pi there are at
most 0.2|P |/nα short shortcuts. From this we can deduce that in the funnel decomposition of Pi there
are at most 0.2|P |/nα = O(|P |/nα) funnels (at the end of a maximal funnel there must be a short
shortcut by the definition of a funnel).

Since in half of the calls to Short-Shortcuts(Mi), for i = 1, . . . r, the funnel decomposition of Pi has
O(|P |/nα) funnels, we get w.h.p. 31 that during Update-Shortcuts(M) we run Long-Shortcuts(Mj),
for some 1 ≤ j ≤ r, where Pj satisfies the above (i.e., has at most |P |/nα funnels in its funnel
decomposition).

Let M ′ be the matrix in which we accumulate long shortcuts in Update-Shortcuts(M). We prove in
Lemma F.11 that if we run Long-Shortcuts(Mj) where Pj has t = O(|Pj |/nα) funnels (and therefore
|Pj | = Ω(tnα)) in its decomposition then there is a monotone path P ′ in GM ′

from u to v that satisfies

|P ′| ≤ (1− 1/ log n) |Pj | and gG
M′

(P ′) ≥ gMj (Pj), which proves the Lemma F.2.

To prove Lemma F.11, for every arc e ∈ Pj we consider the furthest first-arc bounded subpath Pe of
P that starts at e. Note that similarly to Lemma E.13, if we extend Pe with the next arc in P , we
get a monotone path of length at least |Pe|. We prove in Lemma F.10 that the arc-bounded subpaths
Pe for e ∈ E, form a laminar set. We then argue that there is a large subset B ⊆ {Pe | e ∈ Pj} that
satisfies

29Note that a funnel of only two arcs of the same gain in absolute value is both first-arc bounded and last-arc bounded.
30The same argument applies for descending paths but we will need to incorporate charge drops to the argument.
31The probability is 1−

(
1− logn

r

)r ≥ 1− 1
n

49

1. |B| = Ω(|P |/ log n)

2. B has a stronger structure than laminarity: It is a union of chains B = ∪qk=1Bk, where a chain
Bk is a set of subpaths such that for every two paths P1, P2 ∈ Bk either P1 ⊆ P2 or P2 ⊆ P1.

3. There exists 0 ≤ f⋆ ≤ log n such that for every Pe ∈ B, it holds that the number of maximal
funnels in Pe is at least 2f

⋆
and less than 2f

⋆+1.

4. Similarly to the bound |Pj | = Ω(tnα), i.e., the length of Pj is larger than the number of funnels

in Pj by at least a factor of nα, we have |Bk| = Ω
(
2f

⋆
nα

logn

)
for every 1 ≤ k ≤ q. This means that

the length of the longest path in Bk is larger by a factor of at least nα/ log n than the number
of funnels inside it.

Let 1 ≤ k ≤ q. We finish the argument by saying that because of the chain structure of Bk and
because we uniformly sample vertices in Long-Shortcuts, we will sample w.h.p. a vertex v ∈ Tf⋆ (see
Long-Shortcuts) that is the first vertex of a path Pe ∈ Bk that contains Ω(|Bk|) of the paths in
Bk. In particular |Pe| = Ω(|Bk|). By Lemma E.13, after Arc-Bounded-To-Monotone(M,D), D will
dominate the monotone path that corresponds to Pe, which is of length |Pe| = Ω(|Bk|). Because B is
composed of disjoint chains, it follows that w.h.p. the total shortcutting we perform to P will be of
size

∑q
k=1Ω(|Bk|) = Ω(|B|) = Ω(|P |/ log n).

The proof of Lemma F.11 is based on the following structural definitions that formalize the paths Pe

in the above explanation. These definitions allow us to measure how many applications of Concatenate
and Concatenate-Opposite are needed in order to dominate a path Pe.

Definition F.4. Let P = e1 . . . ek be a path in GM . For every 1 ≤ i ≤ k we define

• s̄P (i) ≥ i, the maximal index such that ei . . . es̄P (i) is ei-bounded.

•
¯
sP (i) ≤ i, the smallest index such that e

¯
sP (i) . . . ei is ei-bounded.

When P is clear from the context, we abbreviate and write s̄(i),
¯
s(i).

Definition F.5. Let P = e1 . . . ek be a path in GM and let F1, . . . , Ft be the funnel decomposition
of P . For every i we define

• f̄P (i) = b− a+ 1, where a is maximal such that ei ∈ Fa and b is minimal such that es̄(i) ∈ Fb.

•
¯
fP (i) = a− b+ 1, where a is minimal such that ei ∈ Fa and b is maximal such that e

¯
s(i) ∈ Fb.

When P is clear from context, we abbreviate and write f̄(i),
¯
f(i).

Remark 1. Some arcs on a path might belong to two funnels (arcs that end/start a funnel). This is
the reason Definition F.5 needs to specify a concrete funnel that contains ei, es̄(i), e

¯
s(i).

The following lemma states that for every arc ei in a path P = e1 . . . ek, if we extend the arc bounded
path ei . . . es̄(i) by a single arc then we can extract from this path a monotone path, See Figure 20(a),(d)
and (c),(f).

Lemma F.6. Let P = e1 . . . ek be a path in GM . Then for every 1 < i < k

• If s̄(i) < k then either ei . . . es̄(i)+1 is monotone or ei+1 . . . vs̄(i)+1 is monotone.

• If
¯
s(i) > 1 then either es̄(i)−1 . . . ei is monotone or es̄(i)−1 . . . ei−1 is monotone.

50

Proof. We prove only the first claim, the second claim is symmetric.

Assume s̄(i) < k and let (u, v) = ei and (x, y) = es̄(i)+1. By the definition of s̄(i), it holds that
ei . . . es̄(i) is ei-bounded and gy = g(ei . . . es̄(i)+1) is either strictly larger than max(gu, gv) or strictly
smaller than min(gu, gv). Thus, if gy > max(gu, gv) then y creates an ascending path with the vertex
of minimum gain, either u or v. Similarly, if gy < min(gu, gv) then y creates a descending path with
the vertex of maximum gain, either u or v.

The following lemma is similar to Lemma F.6 and addresses the case in which a maximal arc bounded
path in P reaches the last arc of P , and P is monotone with respect to a charge drop schedule, See
Figure 22.

Lemma F.7. Let P = e1 . . . ek be a monotone path in GM .

If P is ascending, then for every 1 < i < k

• If s̄(i) = k then either ei . . . ek is ascending or ei+1 . . . ek is ascending.

• If
¯
s(i) = 1 then either e1 . . . ei is ascending or e1 . . . ei−1 is ascending.

If P is descending with respect to a charge drop schedule C, then for every 1 < i < k

• If s̄(i) = k then, with respect to an appropriate suffix of C, either ei . . . ek is descending or
ei+1 . . . ek is descending.

• If
¯
s(i) = 1 then, with respect to an appropriate prefix of C, either e1 . . . ei is descending or

e1 . . . ei−1 is descending.

Proof. Assume P is descending, the case of an ascending path is simpler since there is no charge drop
schedule in play. Assume s̄(i) = k, the case

¯
s(i) = 1 is symmetric.

Let (u, v) = ei and (x, y) = ek. By the definition of s̄(i), it holds that Pi = ei . . . ek is ei-bounded (with
respect to the zero schedule). Therefore, for every w ∈ Pi we get g

P
w ≤ max{gPu , gPv }. Since u, v are the

first two vertices of Pi, we get for every w ∈ Pi that gP,Cw ≤ max{gP,Cu , gP,Cv }. Since P is descending
with respect to C, then for every w ∈ Pi it holds that gP,Cw ≥ gP,Cy . Thus, if gP,Cu ≥ gP,Cv then
Pi = ei . . . ek = uv . . . y is descending with respect to a suffix of C and otherwise ei+1 . . . ek = v . . . y is
descending with respect to a suffix of C.

The case
¯
s(i) = 1 is symmetric.

Lemma F.8. Let P = e1 . . . ek = v1 . . . vk+1 be a negative arc bounded path in GM . Let F1, . . . Ft be the
funnel decomposition of P . The following holds w.h.p. after the main for-loop in Long-Shortcuts(M,D).

• Assume P is a v1v2vk+1-path in GM . If v1 is sampled to Tj, where 2j ≥ t, then D dominates P .

• Assume P is a v1vkvk+1-path in GM . If vk+1 is sampled to Tj, where 2j ≥ t, then D dominates

P .

Proof. Throughout the proof we use the procedures Concatenate and Concatenate-Opposite in order
to concatenate funnels. Recall that we only use Concatenate on two negative arc bounded paths and
we only use Concatenate-Opposite on a negative arc bounded path and a positive arc bounded path.
Note that every other arc on a funnel has negative gain.

We prove only the first case since the second case is symmetric. For b = 1 . . . t, denote Fb = eℓb . . . erb .
We prove by induction on b = 1 . . . t that after iteration b−1 (among the 2j) of applying the procedures
Concatenate(M,D, Tj , V, V) and Concatenate-Opposite(M,D, Tj , V, V), D dominates Pb = e1 . . . erb .

51

𝑒𝑘

𝑒𝑖

𝑒𝑘

𝑒𝑖

𝑒𝑖+1

𝑒𝑖+1

Figure 22: Two illustrations of Lemma F.7. The dotted blue arrows point from the beginning to the
end of the monotone suffixes. On the left we have an ascending path e1 . . . ek, where s̄(i) = k and ei
has negative gain. On the right we have a descending path e1 . . . ek (the original path is in black) with
respect to a charge drop schedule (indicated by the down vertical red arrows), where s̄(i) = k and ei
has negative gain. The two symmetric cases in which ei is of positive gain are not shown.

The base case b = 1 is immediate by Lemma E.9 which states that after executing Compute-Funnels(M),
D dominates each of F1, . . . , Ft w.h.p. (Long-Shortcuts starts by running Compute-Funnels(M)).
Therefore D dominates F1 even before the first iteration. Since a subpath of a funnel is also a
funnel (see Lemma B.9), it follows that w.h.p. D also dominates all of the subpaths of each of the
funnels F1, . . . , Ft.

Assume that after the first b − 1 iterations, D dominates Pb = e1 . . . erb . Consider the next funnel
Fb+1 = eℓb+1

. . . erb+1
and the b’th iteration. We split to the following cases.

Case Fb+1 is erb+1-bounded: If erb+1
has nonnegative gain, we apply Lemma E.11 on Pb and

the funnel Fb+1 \ Pb: After performing Concatenate-Opposite(M,D, Tj , V, V) in iteration b in the in-
ner loop of Long-Shortcuts, D dominates Pb+1 = e1 . . . erb+1

. If erb+1
has negative gain, then by

Lemma B.9, erb+1−1 has positive gain and F ′
b+1 = eℓb+1

. . . erb+1−1 is a funnel which is erb+1−1-bounded.
Therefore, by Lemma E.11, after performing Concatenate-Opposite(M,D, Tj , V, V), D dominates
P ′
b+1 := Pb | (F ′

b+1 \Pb) = e1 . . . erb+1−1. By Lemma E.7, after performing Concatenate(M,D, Tj , V, V)
(i.e., concatenating P ′

b+1 with the single negative gain arc erb+1
), D dominates Pb+1 = P ′

b+1 | erb+1
.

Case Fb+1 is eℓb+1
-bounded: Consider the funnel F ′

b+1 = Fb+1 \ Pb and let s ≥ ℓb+1 be the
index such that F ′

b+1 = es . . . erb+1
. By Lemma B.9, since Fb+1 is first arc bounded then so is

F ′
b+1. If es has negative gain, then by Lemma E.7, after performing Concatenate(M,D, Tj , V, V),

D dominates Pb+1 = Pb | F ′
b+1. If es has nonnegative gain, then by Lemma E.11, after performing

Concatenate-Opposite(M,D, Tj , V, V), D dominates Q = Pb | es. By Lemma B.9, es+1 has nega-
tive gain and therefore F ′′

b+1 = F ′
b+1 \ {es} = es+1 . . . erb+1

is negative arc bounded. Therefore, by
Lemma E.7, after performing Concatenate(M,D, Tj , V, V), D dominates Pb+1 = Q | F ′′

b+1.

The following is a corollary of Lemma E.13 and Lemmas F.6, F.7, F.8.

Corollary F.9. Let P = e1 . . . ek be a monotone path in GM which is either descending with respect
to a charge drop schedule C or ascending with respect to the zero schedule. Let (u, v) = ei ∈ P be a
negative gain arc and let P̄i,

¯
Pi be the monotone32 paths corresponding to es̄(i), e

¯
s(i), respectively, given

by Lemmas F.6 and F.7.33 The following holds at the end of Long-Shortcuts(M).

• Assume P̄i starts with ei. If u is sampled into Tj and 2j ≥ f̄(i), then D dominates P̄i.

32These paths may have a charge drop schedule assigned to them.
33Monotone paths given by Lemma F.6 start either at u or at v and end at es̄(i)+1. Monotone paths given by Lemma F.7

start either at u or at v and end at ek. Similarly monotone paths given by Lemma F.6 end either at u or at v and start
at e

¯
s(i)−1. Monotone paths given by Lemma F.7 end either at u or at v and start at e1.

52

• Assume P̄i starts with ei+1. If u is sampled into Tj and 2j ≥ f̄(i), then D dominates P̄i.

• Assume
¯
Pi ends with ei. If v is sampled into Tj and 2j ≥

¯
f(i), then D dominates

¯
Pi.

• Assume
¯
Pi ends with ei−1. If v is sampled into Tj and 2j ≥

¯
f(i), then D dominates

¯
Pi.

The domination is with respect to a sub-schedule of C.

Proof. We prove only the first case, the other cases are simpler. Assume P̄i starts with ei and u ∈ Tj .
Since ei has negative gain, it follows that P̄i is descending with respect to a charge drop schedule C ′.
Let Pi = ei . . . es̄(i). By Lemma F.8, after the for loop in Long-Shortcuts(M), D dominates Pi. Let b
be the index such that P̄i = ei . . . eb. By Lemmas F.6 and F.7, either b = s̄(i) + 1 or b = s̄(i) = k. We
split into the following cases.

Case b = s̄(i) + 1: By Lemma F.6, P̄i = Pi | es̄(i)+1 is monotone and C ′ is respect to the zero
schedule. Therefore, by Lemma E.13, after Arc-Bounded-To-Monotone(M,D, T), D dominates P̄i.

Case b = s̄(i) = k: Therefore P̄i = Pi is descending with respect to C ′. Note that gC
′
(P̄i) ≤

gP̄i,C
′

v ≤ gP̄i
v = M [u][v]. Consider the vertex representation of Pi and let r be the index such that

Pi = v1v2 . . . vr, where v1 = u and v2 = v. Since D dominates Pi, it follows by Lemma E.13 that
following the application of Arc-Bounded-To-Monotone(M,D, T) we have that D[v1][vr] ≥M [v1][v2] =
M [u][v] ≥ gC

′
(P̄i). Thus, D dominates P̄i with respect to C ′.

The following lemma proves that for every path P = e1 . . . ek, the set of paths {ei . . . es̄(i) | 1 ≤ i ≤ k}
is laminar and similarly {e

¯
s(i)...ei | 1 ≤ i ≤ k} is laminar.

Lemma F.10. Let P = e1 . . . ek be a path in GM , then the sets of intervals {(i, s̄(i)) | 1 ≤ i ≤ k} and
{(
¯
s(i), i) | 1 ≤ i ≤ k} are laminar.

Proof. We prove the claim only for the first set, the other set is symmetric. Let 1 ≤ i ≤ k and let
j ∈ (i, s̄(i)). We show (j, s̄(j)) ⊆ (i, s̄(i)) from which the lemma follows. Denote ei = (u, v) and
ej = (x, y). Since Pi = ei . . . vs̄(i) is ei-bounded, we have gw ∈ [min{gu, gv},max{gu, gv}] for every
w ∈ Pi. In particular [min{gx, gy},max{gx, gy}] ⊆ [min{gu, gv},max{gu, gv}].
Since ej . . . es̄(j) is ej-bounded we get that gw ∈ [min{gx, gy},max{gx, gy}] ⊆ [min{gu, gv},max{gu, gv}]
for every w ∈ Pj = ej . . . es̄(j). Therefore ei . . . es̄(j) is ei-bounded, so by the maximality of s̄(i) we get
that s̄(i) ≥ s̄(j), and therefore (j, s̄(j)) ⊆ (i, s̄(i)).

The following lemma easily derives Lemma F.2. This lemma is our main theoretical contribution and
the key to our result.

Lemma F.11. Let P = e1 . . . ek be a monotone simple path in GM with respect to a charge drop
schedule C, from s to t. Let F1, . . . , Ft be the funnel decomposition of P . Let M̄ be the shortcuts table
returned from Long-Shortcuts(M). If t ≤ k/nα and k is polynomial in n = |V |, then w.h.p. there is a
monotone path P ′ in GM̄ , with respect to a charge drop schedule C ′, from s to t in GM̄ that satisfies

gG
M̄
(P ′) ≥ gG

M
(P) and |P ′| ≤ (1− 1/Ω(log n)) · |P |.

Proof. By the statement of the lemma, nα ≤ k ≤ n and therefore log k = Θ(log n). Consider F1, . . . Ft,
we distinguish between funnels that are first-arc bounded to those which are last-arc bounded. Assume
that the majority of the arcs of P belong to first-arc bounded funnels. The analysis for the other case
is symmetric. Among these funnels (first-arc bounded), we consider only funnels of length at least
nα/4. Note that at least k/4 arcs belong to such funnels (if more than k/4 arcs belong to funnels
of length at most nα/4 then t > k/nα, a contradiction). Among these arcs, we take only those of

53

negative gain. Since every other arc in a funnel is of negative gain (Lemma B.9), we are left with at
least k/10 arcs.34 Denote these arcs by ei1 , . . . eir .

By Lemma F.10, the set A = {(ij , s̄(ij)) | 1 ≤ j ≤ r} is laminar. We refer to each item in A as
an interval. For i = 1, . . . , log k, let Ai = {(ij , s̄(ij)) | f̄(ij) ∈ [2i, 2i+1)} ⊆ A, see Definition F.5.
Observe that for every 1 ≤ i ≤ k, Ai is laminar as a subset of A. Moreover, each interval in Ai

cannot contain two disjoint intervals in Ai. Indeed, assume (ij1 , s̄(ij1)), (ij2 , s̄(ij2)) ⊆ (ij3 , s̄(ij3)) and
(ij1 , s̄(ij1)) ∩ (ij2 , s̄(ij2)) = ∅, where all intervals belong to Ai. Therefore f̄(ij3) ≥ f̄(ij1) + f̄(ij2) ≥
2i + 2i = 2i+1, so (ij3 , s̄(ij3)) /∈ Ai, a contradiction. It follows that we can decompose Ai into a
collection of chains. Each chain is a maximal subset of nested intervals in Ai.

Let i⋆ be such that |Ai⋆ | ≥ |Ai| for every 1 ≤ i ≤ log k. Thus, |Ai⋆ | ≥ k
10 log k . Let B1, . . . , Bq be the

decomposition of Ai⋆ into chains. We have that Ai⋆ = ∪qi=1Bi. Since the Bi’s are disjoint, q · 2i⋆ ≤ t.
Let A′

i⋆ be the union of the Bi’s that satisfy |Bi| ≥ k
20q log k . It follows that

|A′
i⋆ | ≥ |Ai⋆ | − q · k

20q log k
≥ k

20 log k
. (13)

Let Bj ⊆ A′
i⋆ . We have that

|Bj | ≥
k

20q log k

(1)

≥ k · 2i⋆

20t log k

(2)

≥ nα2i
⋆

20 log k
,

where (1) follows since q · 2i⋆ ≤ t and (2) follows since t ≤ k/nα. Since Long-Shortcuts(M) samples

vertices to Ti⋆ i.i.d. with probability Θ(log
2 n

2i⋆nα) and k ≥ t · nα = Ω(nα), it follows by the Chernoff
bound that Ti⋆ contains Ω(log k) = Ω(log n) vertices u ∈ V , where eia = (u, v) and (ia, s̄(ia)) ∈ Bj .
Furthermore, w.h.p. Ti⋆ contains a vertex u, incident to an arc eia = (u, v), for some index ia, such
that (ia, s̄(ia)) is among the 0.5|Bj | longest intervals in Bj . Fix such a vertex uj and the corresponding
index iaj for every chain Bj ⊆ A′

i⋆ .

Let q′ be the number of chains in A′
i⋆ . Let Pa1 , . . . , Paq′ , be the monotone paths that correspond to

(iaj , s̄(iaj)), for j = 1, . . . , q′, by Lemmas F.6 and F.7. Notice that since (iaj , s̄(iaj)) is among the
0.5|Bj | longest intervals in Bj , it follows that |Paj | ≥ 0.5|Bj |. By Corollary F.9, M̄ (M̄ is defined
in the statement of the lemma) dominates Paj , for j = 1, . . . , q′. Since each Bj is a maximal chain,
the intervals (iaj , s̄(iaj)), j = 1, . . . , q′, are pairwise disjoint so it follows that Pa1 , . . . , Paq′ are also

disjoint. Therefore, if we replace each Paj by the corresponding shortcut in GM̄ , we get a path P ′ in

GM̄ of length

|P ′| ≤ k −
q′∑
j=1

|Pai | ≤ k −
q′∑
j=1

0.5|Bj | = k − 0.5|A′
i⋆ |

(1)

≤ k − 0.5
k

20 log k

(2)
=

(
1− Ω

(
1

log n

))
· k =

(
1− Ω

(
1

log n

))
· |P |,

where inequality (1) follows from Equation (13) and equality (2) follows since k = O(poly(n)).

We are left to prove that P ′ is monotone with respect to some charge drop schedule. If P is ascending
then it is clear. Assume P is descending with respect to C and denote P ′ = v1 . . . vk. We claim that

there is a charge drop schedule C ′ such that gP
′,C′

vi = gP,Cvi , for every i = 1, . . . , k.35 This claim holds
since M̄ ≥M coordinate-wise and since M̄ dominates all monotone paths Paj , for j = 1, . . . , q′.

34The choice of 10 was arbitrary. If nα >> 1 the number of negative gain arcs in funnel is very close to half of the
length of the funnel.

35There is vagueness when writing gP,C
vi since P is not necessarily simple. We refer to the appropriate copy of vi

according to the shortcutting performed on P

54

We are ready to prove Lemma F.2.

Proof of Lemma F.2. Let r = nα and letM0(= M),M1, . . . ,Mr be the shortcuts tables throughout the
r iterations of Update-Shortcuts. Let (P0, C0)(= (P,C)), (P1, C1), . . . , (Pr, Cr) be a series of monotone
paths, where Pi is the shortest path in GMi from v1 to vk that has no smaller gain (with respect to
GMi and Ci) than Pi−1 (with respect to GMi−1 and Ci−1). These paths are guaranteed to exist by the
definition of the algorithm. We split the proof into cases.

Case |P | ≤ r: Since we make r rounds of Short-Shortcuts, we get by Lemma B.5 that, for every
1 ≤ i < r, if |Pi| > 1 then |Pi+1| < |Pi|. Thus, |Pr| = 1 and the lemma follows.

Case |P | > r: If Pr ≤ |P |/2, then we are done. Otherwise Pr > |P |/2 and therefore for at least
r/2 indices 0 ≤ i < r, it holds that |Pi| − |Pi+1| ≤ |P |/r. This mean that, for each such index
i, Pi has at most |P |/r disjoint short shortcuts as subpaths. Since at the end of a maximal funnel
there is a short shortcut, it follows that Pi has O(|P |/r) maximal funnels in its funnel decomposition.
Therefore, w.h.p. we run Long-Shortcuts(Mi) at an iteration i such that |Pi| − |Pi+1| ≤ |P |/r and Pi

has O(|Pi|/r) = O(|P |/nα) funnels in its funnel decomposition. Hence, the conditions of Lemma F.11
are satisfied and we are done.

F.3 Running Time

Lemma F.12. Procedure Compute-Funnels(M) terminates in expected Θ̃(n10/3) time.

Proof. Denote by TFunnel, TBFS the expected running times of Compute-Funnels(M) and Breadth-Search(M,D),
respectively. Let TConcat(u,w, x) be the running time of Concatenate(M,D,U,W,X), where |U | =
u, |W | = w, |X| = x.

Clearly TBFS = Θ̃(n3) and TConcat(u,w, x) = Θ̃(n3 + uwx · n). Therefore,

TFunnel = n1−β · TBFS + Θ̃
(
TConcat

(
nβ, nβ, n

))
= Θ̃(n4−β) + Θ̃(n3 + n2+2β).

Therefore, by setting β = 2/3, we get TFunnel = Θ̃(n10/3).

Lemma F.13. Procedure Compute-Shortcuts(G) terminates in expected Θ̃(n3.5) time.

Proof. Denote by TShort, TLong, TFunnel the expected running times of Short-Shortcuts(M), Long-Shortcuts(M),
Compute-Funnels(M), respectively.

Let TConcat(u,w, x) = Θ̃(n3+uwx·n) and note that this is the running time of Concatenate(M,D,U,W,X)
and Concatenate-Opposite(M,D,U,W,X), where |U | = u, |W | = w, |X| = x. Let TBounded(t) =
Θ(t · n3) be the running time of Arc-Bounded-To-Monotone(M,D, T), where |T | = t.

Clearly TShort = Θ̃(n3). By Lemma F.12, it holds that TFunnel = Θ̃(n10/3).

We now analyze the expected running time of Long-Shortcuts(M). Consider the For loop in Long-Shortcuts(M).
For every i = 1, . . . , O(log n), the expected size of Ti is Θ̃(κ/2i), where κ = n1−α. Therefore, the ex-
pected size of T (the union of all the sets Ti throughout the iterations) is Θ̃(κ). We get that

TLong = TFunnel +

logn∑
i=1

2i · TConcat

(κ

2i
, n, n

)
+ TBounded(κ) = Θ̃(n10/3) + Θ̃(κn3) + Θ̃(κn3) = Θ̃(n10/3 + n4−α).

Finally, the expected running time of Compute-Shortcuts(G) is nα ·TShort +Θ̃(1) ·TLong = Θ̃(n3+α)+
Θ̃(n10/3+n4−α). Therefore, by setting α = 0.5, we get that the expected running time of Compute-Shortcuts(G)
is Θ̃(n3.5).

55

G Relating M and D to G

In Theorem F.1 we have seen that every monotone simple path in G is dominated w.h.p. by the final
shortcuts table M returned by Compute-Shortcuts. Moreover, by Invariant 1 we know that every value
in D is realizable by a traversable path in GM .

The following lemma gives the relation between GM and G. The lemma states that any traversable
path in GM can be “unwrapped” to a traversable path in G that has “better” α (maximum final
charge) values.

Lemma G.1. Let M be the shortcut table return by Compute-Shortcuts. Let P = v1 . . . vk be a
traversable path in GM and let C be a charge drop schedule for P . There exists a traversable path
P ′ = P v1v2 | P v2v3 | . . . | P vk−1vk in G and a charge drop schedule C ′ = Cv1v2 | Cv2v3 | . . . | Cvk−1vk

such that

(a) P vivi+1 is a monotone path from vi to vi+1 in G with respect to the charge drop schedule Cvivi+1,
for every 1 ≤ i < k. In particular, if P is of length 1 then P ′ is monotone with respect to C ′.

(b) gP,Cvi = gP
′,C′

vi , for every 1 ≤ i ≤ k.

(c) αG
b (P

′) ≥ αGM

b (P) for every b ∈ [0, B].

Proof. Let M1 be the adjacency matrix of G. Let Mi for i ≥ 2 be the shortcuts table computed by
the i − 1’th iteration of Compute-Shortcuts and let Mt = M , where t is the number of iterations of
Compute-Shortcuts. For every i = 1, . . . , t− 1, let Di be the data structures that we used to generate
Mi+1. We prove by induction on i that the lemma holds in GMi for every i = 1, . . . , t. The base
case i = 1 follows since GM1 = G. Let i > 1 and let P = v1 . . . vk be a traversable path in GMi . By
definition, for every s, t ∈ V it holds that Mi[s][t] = Di−1[s][t]. Moreover, by invariant 1(C), there
is a monotone path P st in GMi−1 with respect to a charge drop schedule Cst such that gC

st
(P st) =

Di−1[s][t] = Mi[s][t]. Let P
′ = P v1v2 | P v2v3 | . . . | P vk−1vk and let C ′ = Cv1v2 | Cv2v3 | . . . | Cvk−1vk . It

follows that gP,Cvj = gP
′,C′

vj , for every 1 ≤ j ≤ k. Since P is traversable and by Lemma C.2, it follows that

P ′ is traversable (in GMi−1) and satisfies αGMi−1

b (P ′) ≥ αGMi

b (P) for every b ∈ [0, B]. The inductive
step follows by applying the inductive assumption to P ′ and C ′ = Cv1v2 | Cv2v3 | . . . | Cvk−1vk .

We get as a corollary the following structural lemma about paths realizing the values in D.

Corollary G.2. Let M be a shortcuts table and let D be a data structure that maintains Invariant 1
with respect to GM . The following holds for every x, y, z ∈ V .

1. Assume D[xy][z] ̸= −∞. Then there exists a traversable path P = P xy | P yz in G and a charge
drop schedule C = Cxy | Cyz such that36

(a) gC(P) = D[xy][z],

(b) P xy is monotone with respect to Cxy and M [x][y] = gC
xy
(P xy),

(c) The gains of the first and last vertices of P xy (i.e. x and y) bound the gains of all other
vertices in P . All gains are with respect to C.

2. Assume D[x][yz] ̸= −∞. Then there exists a traversable path P = P xy | P yz in G and a charge
drop schedule C = Cxy | Cyz such that

(a) gC(P) = D[x][yz],

36The paths P xy and P yz are paths from x to y and from y to z, respectively. We use the same convention also for
claims 2 and 3.

56

(b) P yz is monotone with respect to Cyz and M [y][z] = gC
yz
(P yz),

(c) The gains of the first and last vertices of P yz (i.e. y and z) bound the gains of all other
vertices in P . All gains are with respect to C.

3. Assume D[x][y] ̸= −∞. Then there exists a traversable path P in G and a charge drop schedule
C such that

(a) gC(P) = D[x][y],

(b) P is monotone with respect to C.

Proof. We prove only the first claim, the other claims are similar. Assume D[xy][z] ̸= −∞ and
assume w.l.o.g. M [x][y] > 0. Let P = v1 . . . vk and C be the path in GM and charge drop schedule
that realize D[xy][z] by Invariant 1(A). Thus, gC(P) = D[xy][z]. Let P ′ = P v1v2 | P v2v3 | . . . | P vk−1vk

and C ′ = Cv1v2 | Cv2v3 | . . . | Cvk−1vk be the path in G and charge drop schedule realizing P by
Lemma G.1. Thus, gC

′
(P ′) = gC(P) = D[xy][z], proving claim 1(a). By Lemma G.1, P v1v2 = P xy is

monotone with respect to Cv1v2 = Cxy and gC
xy
(P xy) = M [x][y], proving claim 1(b). By Lemma G.1,

we get that gP,Cvi = gP
′,C′

vi for every 1 ≤ i ≤ k. Since P is first-arc bounded with respect to C, we get

that gP
′,C′

v1 ≤ gP
′,C′

vi ≤ gP
′,C′

v2 for every 1 ≤ i ≤ k.

We now prove claim 1(c). Let v ∈ P ′ and 1 ≤ i < k be such that v ∈ P vivi+1 . Since P vivi+1 is
monotone with respect to Cvivi+1 , we get that

gP
′,C′

v1 ≤ gP
′,C′

vi ≤ gP
′,C′

v ≤ gP
′,C′

vi+1
≤ gP

′,C′
v2 .

H Stage II - Computing the α values

Let M be the shortcuts table we receive from Stage I and let D = Compute-Funnels(M).

In this appendix, using M and the data structure D, we show how to compute αB(s, t) for every
s, t ∈ V . Recall that αB(s, t) is the maximum final charge at t when the car starts at s with a full
battery. The algorithms proceeds in two steps.

In the first step we build a graph H = (V 0 ∪V B, E(H)), where V b = {vb | b ∈ {0, B}} represents that
we are at v with at least b charge. An arc ub1vb2 ∈ E(H) represents that αb1(u, v) ≥ b2.

37 We create
the arcs E(H) ⊆ {ub1vb2 | αb1(u, v) ≥ b2} by observing simple properties of the values in D. Finally
we compute the transitive closure H⋆ of H. We claim in Theorem H.12 that w.h.p., for every s, t ∈ V ,
αB(s, t) = B if and only if sBtB ∈ E(H⋆).

The second (and final) step is based on combining the following observations. Let s, t ∈ V and let
P = v1(= s) . . . vk(= t) be an optimal path from s to t (i.e., αB(s, t) = αB(P)). If gvi < 0 for every
i ≤ k then we can assume that P is simple (otherwise it contains a positive gain cycle and we can
repeat this cycle to improve final charge) and we show in Lemma H.15 that αB(s, t) is realized by a
funnel in GM . Otherwise, some vertices in P are visited with full charge. Using H⋆ from the first
step (Theorem H.12), we can find the last vertex y ∈ P that is reached with full charge and compute
αB(y, t). We claim that the suffix P yt of P from y to t is simple, so (by Lemma H.15) αB(y, t) is
realized by a funnel in GM . Thus, the second step amounts to finding pairs (y, t) such that sByB ∈ H⋆

and αB(y, t) can be realized by a funnel. We use the best such pairs in order to compute αB(s, t) for
every s, t ∈ V .

The rest of this section is organized as follows. In Appendix H.1 we build the transitive closure
graph H⋆ and prove basic properties of H⋆. In Appendix H.2 we prove that H⋆ indeed finds all

37Note that the other direction does not necessarily hold: It is possible that αb1(u, v) ≥ b2 but ub1vb2 /∈ E(H).

57

𝑥

𝑥0

𝑦
𝑦

𝑥

𝑥

𝑦

𝑧
𝑥

𝑧0

𝑥

𝑥0 𝑦𝐵

𝑦𝑥 ≠ −∞

𝑥𝐵 𝑦0 𝑥0

𝑦

𝑧

𝑧𝐵

(𝑏) (𝑐)(𝑎) (𝑑)

Figure 23: The 4 types of edges we include in H.

s, t ∈ V such that αB(s, t) = B. Finally, in Appendix H.3 we complete the computation of αB(·, ·)
and prove its correctness as described above.

H.1 The transitive closure graph

After performing Compute-Shortcuts(G) we received a table M of shortcuts and computed the data
structure D = Compute-Funnels(M). Using M and D, we construct the graph H. In the following
sections we define the arcs of H, see Figure 23. After building H, we compute its transitive closure
graph H⋆.

H.1.1 0-0 arcs

For every x, y, z ∈ V , add an arc x0z0 to E(H) if M [x][y] + M [y][z] ≥ 0 and M [x][y] ≥ 0. See
Figure 23(a).

Lemma H.1. Let x0z0 ∈ E(H) , then α0(x, z) ≥ 0.

Proof. Let y ∈ V be such that M [x][y]+M [y][z] ≥ 0 and M [x][y] ≥ 0. The path xyz in GM is strongly
traversable. By Lemma G.1, it follows that there is a strongly traversable path from x to z in G.

H.1.2 0-B arcs

For every x, y ∈ V , add an arc x0yB to E(H) if either M [x][y] ≥ B, or M [x][y] + M [y][x] > 0 and
M [x][y] > 0. See Figure 23(b).

Lemma H.2. Let x0yB ∈ E(H), then α0(x, y) = B.

Proof. If M [x][y] ≥ B then by Lemma G.1 there is a path from x to y in G that satisfies αG
0 (P) ≥

αGM

0 (xy) = B.

Assume M [x][y] + M [y][x] > 0 and M [x][y] > 0. Note that the path xyxy in GM is a strongly
traversable ascending path from x to y of gain at strictly larger than M [x][y]. By extending this
argument, it follows that for every j > 0, P = x(yx)jy is strongly traversable ascending path from x

to y. Thus, there exists a j > 0 such that gG
M
(P) ≥ B. By Lemma C.2, we get that αGM

0 (P) = B.
By Lemma G.1, there is also a path P ′ from x to y in G that satisfies αG

0 (P) = B.

58

H.1.3 B-0 arcs

For every x, y ∈ V , add an arc xBy0 to E(H) if M [x][y] ̸= −∞. See Figure 23(c).

Lemma H.3. Let xBy0 ∈ E(H), then αB(x, y) ≥ 0.

Proof. By the design of Compute-Shortcuts, we have M [x][y] ≥ −B. The proof follows by applying
Lemma G.1 on the traversable path xy in GM .

H.1.4 B-B arcs

For every x, y, z ∈ V , add an arc xBzB to E(H) if M [x][y] + M [y][z] ≥ 0 and M [y][z] ≥ 0. See
Figure 23(d).

Lemma H.4. Let xBzB ∈ E(H), then αB(x, z) = B.

Proof. By the definition of Compute-Shortcuts, M [x][y] ≥ −B and therefore αGM

B (xyz) = B. There-
fore, by Lemma G.1, there is a path P from x to z in G that satisfies αG

B(P) = B.

The following theorem is an immediate consequence of Lemmas H.1, H.2, H.3 and H.4.

Theorem H.5. Let xb1yb2 ∈ E(H⋆), then αb1(x, y) ≥ b2.

H.2 Transitive closure graph - correctness

In this appendix we show that for every s, t ∈ V it holds that αB(s, t) = B if and only if sBtB ∈ E(H⋆),
see Theorem H.11. We begin by addressing entry-exit pairs on positive gain cycles, see Definition C.4.

Lemma H.6. Let C be a positive gain simple cycle in G. There exists an entry-exit pair (x, y) in C
such that w.h.p. x0yB ∈ E(H).

Proof. Let (x′, y′) be an entry-exit of C. If C is not strongly traversable from x′ then for every y ∈ C
such that (x′, y) is an entry-exit pair, it follows from the definition of an entry-exit pair that the
simple path P x′y from x′ to y through C satisfies α0(P

x′y) = B and therefore, by Lemma B.6, P x′y

is ascending and g(P x′y) ≥ B. Therefore, by Theorem F.1 it holds that w.h.p. M [x′][y] ≥ B, so by
definition, x′0yB ∈ E(H).

Assume that C is strongly traversable from x′ and consider the path P from x′ to itself through
C. Let y ∈ P be the vertex of maximum gain on P . Observe that the path from x′ to y on C is
ascending. Indeed the charge level cannot go below the initial charge at x′ (which is zero) and the
charge level at y is maximum. Thus, by Theorem F.1 it holds w.h.p. that M [x′][y] > 0. If y = x′ then
M [x′][y]+M [y][x′] > 0 and therefore, by the definition of E(H), x′0yB ∈ E(H). By Theorem H.5 this
means that (x′, y) = (x′, x′) is an entry-exit pair and we are done.

Otherwise, consider P yx′
, the simple path from y to x′ through C, and let x be the vertex of minimum

gain in P yx′
, see Figure 24. By the choice of x, P yx, the path from y to x through C, is descending.

We now show that P xy = P xx′ |P x′y is ascending. Since x is of minimum gain in P yx′
, it follows that

the gains of the vertices on P xx′
are nonnegative. Moreover, since P x′y is ascending it follows that all

gains on P xy are nonnegative. We are left to show that y has maximum gain in P xy. Since P x′y is

ascending, it is enough to show that (gP
xx′

v =)gP
xy

v ≤ gP
xy

y for every v ∈ P xx′
. Let b = gP

x′y
y , it follows

that gP
xy

y = gP
xx′

x′ + gP
x′y

y ≥ b. We prove that gP
xx′

v ≤ b for every v ∈ P xx′
. By contradiction, assume

there is v ∈ P xx′
such that gP

xx′

v > b. Since all gains of vertices in P are nonnegative we get that

gPv = gPx + gP
xx′

v > b = gPy , a contradiction to the definition of y.

59

𝑦

𝑥′
𝑥

𝑥′

𝑦

𝑥′

𝑥

𝑦

𝑥

𝑥′

𝑣

𝑣

𝑏

Figure 24: Illustration of Lemma H.6. Note that y is of maximum gain in the path from x′ to itself
(through the cycle) and that x is of minimum gain on the subpath from y to x′. As shown in the proof
of Lemma H.6, the path from y to x is descending and the path from x to y is ascending.

By Theorem F.1, w.h.p. M [x][y] ≥ gP
xy

y and M [y][x] ≥ gP
yx

x . Thus, M [x][y]+M [y][x] ≥ gP
xy

y +gP
yx

x =

g(C) > 0, so by the definition of H, we get that x0yB ∈ E(H), so by Lemma H.2, (x, y) is an entry-exit
pair of C.

Lemma H.7. Let P be a strongly traversable simple path in G from x to y, then w.h.p. x0y0 ∈ E(H⋆).

Proof. Denote P = v1 . . . vk where v1 = x and v2 = y. Since P is strongly traversable, v1 has minimum
gain in P . We decompose P into monotone segments as follows, see Figure 25. Let i1 = 1 and let
i1 < i2 ≤ k be such that vi2 has maximum gain in vi1 . . . vk. In particular, vi1 . . . vi2 is ascending. Let
i2 < i3 ≤ k be such that vi3 has the minimum gain in vi2 . . . vk. In particular, vi2 . . . vi3 is descending.
In general, let ij−1 < ij ≤ k be such that vij−1 . . . vij is ascending if j is even and descending otherwise.
Let 1 = i1, . . . it = k be the indices we defined.

We prove that g(vi2j−1 . . . vi2j+1) ≥ 0 for every 1 ≤ j < t/2. Indeed, if j = 1, then since P is strongly
traversable, we get that g(vi1 . . . vi3) ≥ 0. Let 1 < j < t/2. By the definition of vi2j−1 , we get that
g(vi2j−2 . . . vi2j−1) ≤ g(vi2j−2 . . . vi2j+1) and therefore g(vi2j−1 . . . vi2j+1) ≥ 0.

By Theorem F.1, for every 1 ≤ j < t/2, w.h.p. it holds that

M [vi2j−1][vi2j] +M [vi2j][vi2j+1] ≥ g(vi2j−1 . . . vi2j) + g(vi2j . . . vi2j+1) = g(vi2j−1 . . . vi2j+1) ≥ 0.

Thus, by the definition of E(H), for every 1 ≤ j < t/2 it holds that v0i2j−1
v0i2j+1

∈ E(H). As for the

last piece of P , if t is even then M [vit−1][vit] ≥ 0 and M [vit−1][vit] +M [vit][vit] ≥ 0 and therefore by
the definition of E(H), v0it−1

v0it ∈ E(H).

We conclude that since H⋆ is transitively closed, x0y0 = v0i1v
0
it
∈ E(H⋆).

Lemma H.8. Let P be a simple path from x to y such that αB(P) = B, then w.h.p. xByB ∈ E(H⋆).

Proof. Denote P = v1 . . . vk where v1 = x and vk = y. Note that vk has the largest gain in P
(since otherwise it cannot be reached with full charge). Similarly to Lemma H.7, we decompose P
to monotone segments but this time we start the decomposition from vk, see Figure 25. Let i1 = k
and let 1 ≤ i2 < i1 be such that vi2 has the minimum gain in v1 . . . vi1 . In particular, vi2 . . . vi1 is
ascending. Let 1 ≤ i3 < i2 be such that vi3 has the maximum gain in v1 . . . vi2 . In particular, vi3 . . . vi2
is descending. In general, let 1 ≤ ij < ij−1 be such that vij . . . vij−1 is ascending if j is even and
descending otherwise. Let 1 = it, . . . i1 = k be the indices we constructed.

60

𝑥

𝑣𝑖2

𝑦

𝑣𝑖7
𝑣𝑖4

𝑣𝑖3

𝑣𝑖6

𝑣𝑖5

=

𝑣𝑖1

=

𝑥

𝑣𝑖2
𝑦

𝑣𝑖1

𝑣𝑖4

𝑣𝑖3

𝑣𝑖6

𝑣𝑖5=

𝑣𝑖7=

Figure 25: Right: The path decomposition in Lemma H.7. Note that we can pair ascending and
descending paths and have overall nonnegative gain. Left: The path decomposition in Lemma H.8.
We pair descending paths with ascending paths such that the descending path comes first.

Similarly to Lemma H.7, we prove that g(vi2j+1 . . . vi2j−1) ≥ 0 for every 1 ≤ j < t/2. Indeed, if j = 1,
then since vi1 = vk has the largest gain in P , we get that g(vi3 . . . vi1) ≥ 0. Let 1 < j < t/2. By the
definition of vi2j−1 , we get that g(v1 . . . vi2j−1) ≥ g(v1 . . . vi2j+1) and therefore g(vi2j+1 . . . vi2j−1) ≥ 0.
By Theorem F.1, w.h.p. we get that

M [vi2j+1][vi2j] +M [vi2j][vi2j−1] ≥ g(vi2j+1 . . . vi2j) + g(vi2j . . . vi2j−1) = g(vi2j+1 . . . vi2j−1) ≥ 0.

Thus, by the definition of E(H), for every 1 ≤ j < t/2, we get that vBi2j+1
vBi2j−1

∈ E(H). As for the

last piece, note that if t is even then M [vit][vit−1] ≥ 0, so M [vit][vit] +M [vit][vit−1] ≥ 0 and therefore
by the definition of E(H), vBit v

B
it−1
∈ E(H).

Since H⋆ is transitively closed, xByB = vBit v
B
i1
∈ E(H⋆).

The following theorem states that we have indeed found all entry-exit pairs.

Lemma H.9. Let (x, y) be an entry-exit pair in a positive gain cycle C, then w.h.p. x0yB is an arc
in H⋆.

Proof. Let P xy be the simple path from x to y through C. We split into cases.

Case 1: α0(P
xy) = B: Therefore, by Lemma B.6, P xy is ascending with gain at least B. Therefore,

by Theorem F.1, w.h.p., M [x][y] ≥ B and therefore w.h.p. x0yB ∈ E(H) ⊆ E(H⋆).

Case 2: α0(P
xy) < B: Thus, in order to start at x with no charge and reach y (through C) with

full-charge the car must traverse C at least once. Let P ′ be such a path from x to y through C
such that α0(P

′) = B (note that P ′ must cycle C at least once). By Lemma H.6, there exists an
entry-exit pair (x′, y′) on C that satisfies x′0y′B ∈ E(H) and theretofore x′0y′B ∈ E(H⋆). Since P ′

is strongly traversable and it cycles around C at least once, it follows that the simple path from x
to x′ (which is a prefix of P ′) through C is strongly traversable. So, by Lemma H.7, it holds that
x0x′0 ∈ E(H⋆). Finally, since y is an exit of C and y′ lies on the same cycle C, it follows that P y′y,
the simple path from y′ to y through C satisfies αB(P

y′y) = B (since otherwise, the exit y cannot
be reached with full charge from y′ and in particular α0(P

′) < B, a contradiction). Therefore, by
Lemma H.8, y′ByB ∈ E(H⋆). Since H⋆ is transitively closed, we get x0yB ∈ E(H⋆).

We are now ready to prove the main claim.

Theorem H.10. Let s, t ∈ V . If α0(s, t) = B then w.h.p. s0tB ∈ E(H⋆).

Proof. Let P be a path from s to t of the form of Lemma C.5 and let C1, . . . Ck and (x1, y1), . . . (xk, yk)
as in Lemma C.5. By Lemma B.6, P is ascending.

61

If P is simple (i.e., k = 0) then by Theorem F.1 it holds w.h.p. that M [s][t] ≥ g(P) ≥ B and therefore
s0tB ∈ E(H) ⊆ E(H⋆).

Otherwise, Since P starts with a simple path from s to x1 then by Lemma H.7, s0x01 ∈ E(H⋆). By
Lemma H.9, x0i y

B
i ∈ E(H⋆), for every i ≤ k. Let i < k, and consider Q = u1 . . . ut, the simple subpath

of P from yi to xi+1. Let j be maximal such that u1 . . . uj is descending (and also traversable as a
subpath of P). SinceQ is simple and traversable, we get by Theorem F.1 thatM [u1][uk] ̸= −∞. By the
definition of E(H), we get that yBi u

0
j = uB1 u

0
j ∈ E(H). By the minimality of uj , we get that uj . . . ut is

strongly traversable and therefore by Lemma H.7 we get that w.h.p. u0jx
0
i+1 = u0ju

0
t ∈ E(H⋆). Let P ykt

be the (simple) subpath of P from yk to t. It holds that αB(P
ykt) = B. Therefore, by Lemma H.8,

w.h.p., yBk t
B ∈ E(H⋆). Since H⋆ is transitively closed, we get s0tB ∈ E(H⋆).

Theorem H.11. Let s, t ∈ V . If αB(s, t) = B then w.h.p. sBtB ∈ E(H⋆).

Proof. Let P be a path from s to t of the form of Lemma C.5 and let C1, . . . Cℓ and (x1, y1), . . . (xℓ, yℓ)
as in Lemma C.5. If P is simple (i.e., k = 0) then we are done by Lemma H.8. Assume otherwise, and
let P sx1 be the simple subpath from s to x1. By Theorem H.10, we get that x01t

B ∈ E(H⋆). Since H⋆

is transitively closed, it is enough to prove that sBx01 ∈ E(H⋆).

Denote P sx1 = v1 . . . vk and let i be maximal such that αB(s, vi) = B. By Lemma H.8, it holds that
svBi ∈ E(H⋆). Denote P vix1 = vi . . . vk and let vj be the vertex of smallest gain in P vix1 . By the
definition of vi, we get that vi has the largest gain in P sx1 . In particular, vi has the largest gain in
P vivj = vi . . . vj , so P vivj is descending. By Theorem F.1, we get that w.h.p. M [vi][vj] ≥ g(P vivj)(≥
−B) and therefore vBi v

0
j ∈ E(H). Since P vix1 is traversable and vj has the minimum gain in P vivj ,

we get by Lemma C.1 that P vivj is strongly traversable. Therefore, by Lemma H.7, we get that
v0jx

0
1 ∈ E(H⋆). Since H⋆ is transitively closed, we get that sBxB1 ∈ E(H⋆).

By combining Theorem H.11 with Theorem H.5 we get the following theorem.

Theorem H.12. For every s, t ∈ V , w.h.p., αB(s, t) = B if and only if sBtB ∈ E(H⋆).

H.3 Computing the αB(·, ·) values

The algorithm MFC(M) for deriving of the αB(·, ·) values is given in Figure 26. The algorithm
computes a table αB[·][·] and we prove in Theorem H.16 that αB[s][t] = αB(s, t), for every s, t ∈ V .
Algorithm MFC(M) starts by computing H⋆ as explained in Appendix H.1.

The algorithm is based on the following idea. For s, t ∈ V , let P = v1(= s) . . . vk(= t) be an
optimal path from s to t (i.e., αB(P) = αB(s, t)) that follows the structure of Lemma C.5 and let
C1, . . . Cℓ and (x1, y1), . . . (xℓ, yℓ) as in Lemma C.5. Let 1 ≤ i ≤ k be the maximum index that
satisfies αB(v1 . . . vi) = B. By Theorem H.12, w.h.p. sBvBi ∈ E(H⋆). By Lemma C.5 it holds that
αB(v1, yℓ) = B and therefore vi ∈ P yℓvk , where P yℓvk is the (simple) subpath of P from yℓ to t. Hence
vi . . . vk is a simple path.

We prove in Lemma H.15 that there exists x ∈ V that satisfies M [vi][x] ∈ [−B, 0] and B+D[vix][vk] =
αB(vi, vk)(= αB(v1, vk)), see Figure 27 where y = vi, x = vi2 , vk = t.

Based on the above, the algorithm proceeds as follows. For every y, t ∈ V , we upper bound the largest
final charge we can get if we use a simple path P that starts at y with full charge and ends at t such
that y has the maximum gain in P . We store these values in a table AB whose computation is done
by assigning AB[y][t] ← max{B + D[yx][t] | x ∈ V, M [y][x] ≤ 0}, for every y, t ∈ V . Finally, the
computation of αB[s][t] is done by assigning αB[s][t]← max{AB[y][t] | sByB ∈ E(H⋆)}.
The following lemma states that the AB[·][·] valuesMFC(M) computes lower bound the actual αB(·, ·)
values.

62

MFC(M):

H ← Build H(M) // As explained in Appendix H.1

H⋆ ← Transitive closure(H)
D ← Compute-Funnels(M)

AB ← matrix(n, n,−∞) // αB(·, ·) of simple bounded paths starting with B charge

for y, t ∈ V do
for x ∈ V do

if M [y][x] ≤ 0 : // yxt paths

AB[y][t]← max{AB[y][t], B +D[yx][t]}

αB ← matrix(n, n,−∞)
for s, t ∈ V do

if sBtB ∈ E(H⋆) :
αB[s][t]← B

for y ∈ V do
if sByB ∈ E(H⋆) :

αB[s][t]← max{αB[s][t], AB[y][t]}
return α

Figure 26: Computing the maximum final charges αB(s, t) for every s, t ∈ V .

Lemma H.13. Let M be the shortcut table returned by Compute-Shortcuts. Let D = Compute-Funnels(M)
and let αB[·][·] be the result of MFC(M). Then αB(y, t) ≥ B + D[yx][t] for every y, x, t ∈ V that
satisfy −B ≤M [y][x] ≤ 0. In particular, AB[y][t] ≤ αB(y, t) for every y, t ∈ V .

Proof. Let y, x, t ∈ V be as in the statement of the lemma. Let P = P yx | P xt (a traversable path in
G) and C = Cyx | Cxt be as in Corollary G.2 1(a)-(c) when applied on D[yx][t]. Denote P = v1 . . . vk.
Since −B ≤ M [y][x] ≤ 0, it follows by Corollary G.2 1(c) that −B ≤ gP,Cx ≤ gP,Cvi ≤ gP,Cy = 0 for

every 1 ≤ i ≤ k. We prove by induction on i = 1, . . . , k that αB(v1 . . . vi) ≥ B + gP,Cvi and therefore
αB(P) ≥ B + gC(P) = B +D[yx][t].

The base of induction holds since αB(v1) = B = B + gP,Cv1 . Let i > 1, since P is traversable it holds
that αB(v1 . . . vi+1) ≥ 0 and therefore

αB(v1 . . . vi+1) = min{B,αB(v1 . . . vi) + g(vivi+1)}
(1)

≥ min{B,B + gP,Cvi + g(vivi+1)}

≥ min{B,B + gP,Cvi+1
} (2)
= B + gP,Cvi+1

,

where Inequality (1) holds by the inductive hypothesis and Equality (2) holds since we showed that
gP,Cvi ≤ 0 for every 1 ≤ i ≤ k.

As a corollary, we get that the αB[·][·] values that MFC(M) computes, lower bound the actual αB(·, ·)
values.

Corollary H.14. For every s, t ∈ V it holds that αB[s][t] ≤ αB(s, t).

Proof. Let s, t ∈ V . If αB[s][t] = −∞ or αB(s, t) = B then we are done. Assume otherwise. Since
αB(s, t) < B, then by Theorem H.5 sBtB /∈ E(H⋆). Moreover, since αB[s][t] ̸= −∞, there is (t ̸=)y ∈ V
such that sByB ∈ E(H⋆) and αB[s][t] = AB[y][t]. Let x ∈ V be such that −B ≤ M [y][x] ≤ 0 and

AB[y][t] = B +D[yx][t]. We conclude that αB(s, t)
(1)

≥ αB(y, t)
(2)

≥ AB[y][t] = αB[s][t], where Inequal-
ity (1) holds by Theorem H.5 (recall that sByB ∈ E(H⋆)) and Inequality (2) holds by Lemma H.13

63

𝑣𝑖2

𝑣𝑖1

𝑣𝑖4

𝑣𝑖3

𝑣𝑖6

𝑣𝑖5

𝑣𝑖7=

𝑡

𝑦=

Figure 27: The path decomposition in Lemma H.15. The blue arcs correspond to arcs in GM of the
same gain as the subpaths.

Lemma H.15. Let y, t ∈ V . If there is a simple traversable path P from y to t such that αB(P) =
αB(y, t) and gv < gy = 0 for every (y ̸=)v ∈ P , then αB(y, t) = AB[y][t].

Proof. By Lemma C.1 and by the assumption, we get that αB(P) = B + g(P).

Denote P = v1(= y) . . . vk(= t). We decompose P into monotone subpaths as follows (see Figure 27).
Let i1 = 1 and let vi2 , where i1 < i2 ≤ k, be the last vertex of minimum gain in vi1 . . . vk. Since
gv ≤ gy for every v ∈ P , we get that vi1 . . . vi2 is descending. Let vi3 , where i2 < i3 ≤ k, be the last
vertex of maximum gain in vi2 . . . vk. In particular, vi2 . . . vi3 is ascending. In general, let vij , where
ij−1 < ij ≤ k be the last vertex of maximum gain in vij−1 . . . vk if j is odd and and the last vertex
of minimum gain in vij−1 . . . vk if j is even. We get that if j is even then vij−1 . . . vij is descending
and otherwise ascending. Let i1(= 1), . . . it = k be the indices we constructed. Let Pj = vij−1 . . . vij
for j = 2, . . . , t. It follows by the construction and from the assumption that gv < gy = 0 for every
(y ̸=)v ∈ P , that

1. |g(P2)| > |g(P3)| > . . . > |g(Pt)|.

2. sign(g(Pi−1)) = −sign(g(Pi)) for i = 2, . . . t.

Since P is simple, it follows by Theorem F.1 that w.h.p. M [vij−1][vij] ≥ g(vij−1 . . . vij) for every
2 ≤ j ≤ t. Note that actually M [vij−1][vij] = g(vij−1 . . . vij). Otherwise, since gv < 0 for every
(y ̸=)v ∈ P , we can improve P by constructing a path P ′ from P by replacing a subpath vij−1 . . . vij
by a better subpath that corresponds to M [vij−1][vij] by Lemma G.1. This yields αB(P

′) > αB(P), a
contradiction to the optimality of P : αB(P) = αB(y, t). Therefore, by Lemma B.9, vi1vi2 , . . . vit is a
funnel in GM , so by Lemma E.10 we get w.h.p. that D[yvi1][t] = D[vi1vi1][vit] ≥ g(P) = αB(y, t)−B.
Therefore, by the definition of AB in MFC(M).

αB(y, t) ≤ B +D[yvi2][t] ≤ AB[y][t].

Thus, by Lemma H.13 it follows that AB[y][t] = αB(y, t).

Theorem H.16. Algorithm MFC(M) computes αB(s, t) for every s, t ∈ V .

Proof. Let s, t ∈ V . We prove that αB[s][t] = αB(s, t), where αB[·][·] is the table used in MFC(M),
see Figure 26. Let P be a traversable path from s to t of the form of Lemma C.5 and let C1, . . . Ck

and (x1, y1), . . . (xℓ, yℓ) be as in Lemma C.5 and let P yℓt be the simple subpath from yℓ to t.

Let y ∈ P be the last vertex in P that satisfies αB(s, y) = B. By the definition of the decomposition,
αB(s, yℓ) = B and therefore y is on the simple path P yℓt. By Theorem H.12, we get w.h.p. that
sByB ∈ E(H⋆).

64

Let P yt be the simple subpath of P yℓt from y to t. Since αB(P) = αB(s, t) and αB(s, y) = B it follows
that αB(s, t) = αB(P

yt) = αB(y, t). By the definition of y, it holds that gP
yt

v < gP
yt

y = 0 for every
(y ̸=)v ∈ P yt. Therefore, by Lemma H.15, we get that αB(y, t) = AB[y][t].

By the definition of algorithm MFC(M), since sByB ∈ E(H⋆), we get that αB[s][t] ≥ AB[y][t] =
αB(s, t). On the other hand, by Corollary H.14 we have that αB[s][t] ≤ αB(s, t), so we are done.

The following theorem summarise the main result of this paper.

Theorem H.17. Let G = (V,A, g) be a road network that may contain positive gain cycles and let
B ∈ R+. There is a randomized algorithm that in expected Õ(n3.5) time computes a table αB[·][·] such
w.h.p. αB[s][t] = αB(s, t) for every s, t ∈ V .

65

	Introduction
	Technical Review
	Generating monotone paths from arc-bounded paths
	Finding arc-bounded paths
	Solving the all-pairs problem
	Simple energetic paths
	Handling positive cycles
	A technicality - charge drop schedules
	Main technical lemma

	Concluding remarks
	Full Version
	Preliminaries
	Monotone Paths and Shortcuts
	Arc-Bounded Paths
	Funnels

	Relating the Path Structures to Alpha(.,.)
	Overview of the Algorithm
	Stage I
	Stage II

	Stage I - Algorithm for finding shortcuts
	Initializing the data structure
	Short Shortcuts
	Building Long Shortcuts
	Breadth-Search
	Concatenate first-arc bounded paths with first-arc bounded paths
	Dominating Funnels
	Concatenating first-arc-bounded paths with last-arc-bounded paths
	Build monotone paths from arc-bounded paths
	Long Shortcuts

	Stage I Correctness
	Funnel Decomposition
	Proof of Lemma F.2
	Running Time

	Relating M and D to G
	Stage II - Computing the alpha values
	The transitive closure graph
	0-0 arcs
	0-B arcs
	B-0 arcs
	B-B arcs

	Transitive closure graph - correctness
	Computing the alphaB function values

